





Figure 1 - Sequences for d = 3, n = 4.
L
m- .MA In a maximal DS sequence, there exists an element i whose

frequency f(i) = 1.

____Proof.  If vpossible. suppose £(i) > 2 for all i. Tet us consider an
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The same argument puts two elements a, between the az's; continue,
and one reaches a contradiction (since there are only finite by many
distinct symbols).

Application of the Turan Lemma to a normal sequence produces the

COROLLARY. In a normal mgximal (3.n) sequence. f(n) = 1.

ow suppose one has a maximal (3.n) seauence. Delete n. and possiblv
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one of them must be eliminated). The result is a sequence on n-1

symbols, and so its length is at most N(3,n-1). Thus .
N(3,n) < N(3,n-1) + 2.

An easy induction, shows that N(3.n) < 2n-1. and this determines one of .

the main results of [3], namely, that N(3,n) = 2n-1.
The other results of [3] are much more analytical than combinatorial;
we briefly note that
N(4,n) = 5n-C;

N(d,n) = n(d°-4d+3) — C(d) for odd d > 3; N(d,n) = n(d>-5d+8) - C(d) for
even d > 4. Also, [3] gives upper bounds

N(4,n) < 2n(l+log n),

N(d,n) < An exp (B/log n),

for d > 4, A and B dependent on d.

DS Sequences for d > n.




n d 11 2 3| 4 5 7 9( 10
1 1|1 1] 1 1 1 1 1
2 1] 2 31 4 5 6| 7, 8 91 10
3 113 5{ 8} 10| 14| 16| 20| 22} 26
4 1|4 70112 | 16| 23| 28| 35| 40| 47
5 1|5 91 17 | 22| 34| 41| 53661 | 73
6 1|16 |11)22| 29
7 1|17 | 13|27
8 1 |8 (15 32
9 119 |17| 37

10 1 ho (19 42

Table II - Values of N(d,n).

The values above the diagonal are due to Stanton and Roselle, who
considered the case d > n. They proved [8] that N(d,3) = 3d-4 (d even)
and N(d,3) = 3d-5 (d odd). They extended this in [9] to establish
N(d,4) = 6d4-13 (d even) or 6d-14 (d odd). In this same paper, they
show that

N(d,n) Z(E)d - De(n), d even;
N(d,n) z(;)d - D_(n), d odd.
ese lower bounds are usually very close, since D (n) =
- [(2n3 + 9n2 .
are also shown to hold for n = 5 [10], giving N(d,5) = 10d-27 or
10d-29 (but, cf. [5]).

- 32n + 12)/12], and are attained for n = 3 or 4. They

4. The case d = 4.
Roselle and Stanton used the inequality
50-8 < N(4,n) < 2 N(4,n-1) + 2
to obtain small values of N(4,n). However, the attractive conjecture
that N(4,n) = 5n-8 breaks down for n = 12, and Davenport (with Conway)

showed [2] that, for q and r positive,
N(4,qr+l) 2= 6qr-g-5r+2.
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This result immediately applies to give N(4,13) 2 57. However,

Davenport actually showed that

1im Eﬁ%iﬁl > 8

n->e
and a reasonable conjecture today is that this limit is infinite.

The number 4 exerts an irresistible fascination over W.H. Mills,

and so it 1s not surprising to find that he has made the most extensive

tEe re!erence to Mills!!. The Mills table continues on from Table II *
to g: e the following. b"

n 11 22 13 14 15 16 17 18 19 20 21

N(4,1n) 47 53 8 4 69 75 81 86 92 98 104

. T
5. Numbers of DS Sequences. WIS NEE EUApNIRETL,

There has really only been a detailed study of the number of DS
sequences for d = 3. Table 1 shows the number for (3,4), and the
general result is given in [7], where Stanton and Mullin prove that th.

maximal numbers of (3,n) sequences are 1,1,2,5,14,..., that is, the

1 2n-2
n n-1j°

The result for all (3.nz sequenr 2s is more complicate” pamelv.

j —

Catalan numbers
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Roselle in reference [6].
6. Remarks on Recent Work.

The value N(5,5) was originally determined by computer in [9].
Peterkin [5] used a very efficient computer search to obtain N(5,6) = 29,
and to show that there are 35 (5,6) sequences. He corrected the Stanton

Roselle value N(6.5) to 34 _(thev had failed to distineuish between x > Q

-

and x > 0, and so had the incorrect value 33).
Peterkin's work also suggested better bounding sequences, and he was
.e to prove that N(5,n) = 7n-13, N(6,n) 2 13n-32. These bounds are
probably quite good for small n, if we use the analogy with N(4,n).

Very recently, Burkowski and Ecklund [1] have considered the
numbers N(d,n,r). Here r is a regularity number which imposes the
additional restriction that any symbol in the sequence can appear at
most r times.

7. Final Remarks.

The first six sections of this paper are a slightly revised version
of -a survey given to the Australian Mathematical Society Annual Meeting
in Newcastle in the winter of 1974. Two recent papers by Australian

authors have added considerably to our knowledge of DS sequences. A.J.

Dobson and S,0. Macdonald, in Lower Bounds for the Lenqths of Davenport-
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Roselle; they also give a very useful table, for n and d ranging
from 5 to 12, which embodies the latest information known. The
Rennie~Dobson upper bounds result from a recursion relation

2n—-d+2

1
(n-2+ E:g-) Nd(n) <n Nd(n—l) + a3
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