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DAVENPORT-SCHINZEL SEQUENCES

1'. R.G. Stanton and P.H. Dirksen
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" Therc are two interesting dual problems in sequence construction.

A is to construct as short a sequence as possible which contains
sences of a certain type. Problem B is to construct as long a

e as pussible which excludes subsequences of a certain type.
ct-ichinzel (or, more briefly, DS) sequences are a case of

8, oné of the few combinatorial problems to arise from a problem

.:"‘l(crential equations. This paper is intended as an up-to-date
. ftory survey of current knowledge of DS sequences.
Davennort and Schinzel [3] explain that, if F(D)f(x) = 0 is a
j eous, linear, differential equa;ion of degree d, and if
j‘('J'fg(x)v---,fn(x), are n distinct (but not necessarily independent)
®alstions of F(D)f(x) = 0, then a dissection of the real line into
Btarrals
(==, ) (5 %p) 5 ees g g5
b8 deterained 5o that, in any one of these interwvals, eﬁ&ktly one of the
famcr fons £,(x) dominates all others. The ﬁroblem is then, given d and
&, 0 2aximize N.
“his problem neéd not be introduced from differential equations,
s reference {3} describes a compleéely combinato?ial form of the
¥oblen a5 follows. One has the integers 1,2,3,...,n, and a
#vassigned integer d. A DS sequence is defined to be a sequence built

- (
fom 1’2....,n, subject to the constraints that (a) mo two adjacent
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elements are equal, and (b) no subsequence of elements of the‘form-:
.-..ababa... has length greater than d(the elements in the subsequeﬁd
are ordered, but not necessarily adjacent). Thus, for d = 4, n % 5,

the sequence ;

1 21 3 41 5 2 pr-

is a DS sequence, but » S

1 213 4 15 2 1

is not.

We denote the maximal length of a DS sequence by N(d,n). i

2. Normal Sequences and N(3,n).

It is convenient to adopt a convention that all sequences
considered be normal, that is, the symbols are renamed so as to-a;§5'
in natural order. Thus 1251431 is not normal for d.= 4, n = 5;1wé::
would make this sequence normal by writing it as 1231451. -

With this convention, one can easily determine small valuegkof'
N(d,n) by an actual tree search. For example, in Figure l,’we éh;w?l

N(3,4) = 7, and there are five maximal normal sequences.

The values of N(d,n), for either ns# or d equal to 1 or 2, fo
e

easily from.the definition. Figure 1 leads us to the general rééul*

that N(3,n) 2 2n - 1, since B

1 2 3...0-1npn-1...3 2 1 3 —ﬁ

is a DS sequence. The converse is most readily deduced from an in;’“

Lemma due to V. Turan.
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= a8 s
I.f(’lv_b =1,

‘nIf_possible, suppose f£(i) 2 2 for all 1. Let us consider an

- Between 2 occurrences of a;s we must have some element a,.

if the se ond:occurrence of a, precedes the first a, then we have a

=_azalazal; if it follows the second a, then we have a

que cfralazalaz. Hence the order must be
'...al...az...az...al... .

WNE L F TS - o
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Application of the Turan Lemma to a normal ge

quence produca
COROLLARY.

In a normal maximal (3,n) Sequence, f(n) = 1.

Now suppose one has a maximal (3,n) 8equence. Delete n,

w
one other element (if the elements to left and right of n ar
one of them must be eliminated), The result is a sequence on'-

symbols, and so itg length is at most N(3,n-1), Thus
- N(3,n) < N(3,n-1) + 2,
An easy induction shows that N(3,n) < 2p-1

» and thig determin 3 O

the main results of [3], namely, that N(3,n) = 2p-1

.

The other results of [3] are much more analytical thap comH
we briefly note that

N(4,n) > n-C; i

N(d,n) > n(d —4d+3) - ¢(d) for odd d > 3; N(d n) > n(d -5d+8)

even d > 4, Also, [3] gives upper boundg

N(4,n) < 2n(;+log n),

N(d,n) < an exp (Bvlog n), e
for d > 4, A and B dependent on g, 2 “
1%

3. DS Sequences for d > pn, :
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12| 3| &l s| e 7| s 10 w7 - .

1| 1| 1] x| ] zf 2| 1] 1| 1 i A LA

1l 2] 3| &l s| e 7] 8| 9l 10 : F

1] 3| 5| 8| 100 18] 16] 20| 22 26-fa~ A QS? 87

16l 7] 32 16| 23| 28| 35] 40| 47 L'\__'

115 ‘r_9 17| 22| 34| 41| 53 \61 734 H—goo Ll’

116 J1x|22] 29 , .
i b

1717 l13]27 B 5005

1|9 |17|37]|, 5 0

1 po |19 42

'Table I1 - Values of N(d,n).

= Th values above the diagonal are due to Stanton and Roselle, who

‘-gldefed the case d > n. They proved [8] that N(d,3) = 3d-4 (d even)
-

mj) = 3d-5 (d odd). They extended this in [9] to establish

,'a’ -I'Gd;ll3 (d even) or 6d-14 (d odd). In this same paper, they

N(‘d,n) Z(E)d - De(h‘), d even;

CN@m 2()d - D (), d odd.

lower b.ounds are usually very close,. since De(n) =
9n2 - 32n + 12)/12], and are attained for m = 3 or 4. They
lso shown to hold for m = 5 [10], giving N(d,5) = 10d-27 or

5n-8 < N(4,n) < N(4,n-1) + 2

n-1
D small values of N(4,n). However, the attractive conjecture
= 5n-8 breaks down for n = 12, and Davenport (with Conway)
2] fhat, for q and r positive.,_
N(4,qr+l) > 6qr-q-5r+2.
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to glve the following.

n 11 12 . 13 14 15 16
N(4,n) 47 53 58 64 6?__ 75
e 20/ 2

5. Numbers of pg Sequences, g

Table 1 shows the number for (3,4), anih e

general result ig glven ip [7], where Stanton and Mullin prove

o
maximal numberg of (3,n) sequences sre 1,1,2,5,14,..., that 1? th
Catalan numbers

=7 40-3-2k.k yme2 2!,
—k=zo 3 2 U Tratyy

where 3 = 2v/7,
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‘ The result for maximal (3,n) sequences is obtained more easily by

lle m reference [6].

§. Remarks on Recent Work.

) .The value N(5,5) was originally determined by computer in [9].
N .
huruﬂ [5] used a very efficient computer search to obtain N(5,6) = 29,
-‘w ghow that there are 35 (5,6) sequences., He corrected the Stanton
hl‘l“ value N(6,5) to 34 (they had failed to distinguish between x > 0

“‘xz 0 and so had the incorrect value 33).

-le

. Petel;l-d,n s work also suggested better bounding sequences, and he was

sala to prove that N(5,n) 2 7n-13, N(6,n) 2 13n-32. These bounds are

PET;
,“1, quite good for small n, if we use the analogy with N(4,n).

'ﬂ'! recently, Burkowski and Ecklund [1] have considered the
o""'L "- ~
-ﬂlﬂ N(d n,r). Here r is a regularity number which imposes the

ﬂluml.l restrictlon that any symbol in the sequence can appear at

aRENEr T -,
e i times.

r-emarks

'!h firat six sections of this paper are a slightly revised version

-v

-ﬂey given to the Australian Mathematical Society Annual Meeting

umtle’ in the winter of 1974. Two recent papers by Australian
SapyR T

shers have added considerably to our knowledge of DS sequences. A.J.
b

LREET e ue
Jsiees end S.0. Macdonald, in Lower Bounds for the Lengths of Davenport-

MAdraal Soqueniocs, Utilitas Mathematica 6 (1974), 251-257, have

—I-hnbly strengthened the known lower bounds. B.C. Rennie and
% . e -“ .

IJ.M in Upper Bounds for the Lengths of Davenport -Schinzel

Swpwmogs, Utilitas Mathematica 8 (1975), 181-185, have derived new
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Roselle; they also give a very useful table, for p and d r}}

from 5 to 12, which embodies the latest Information known. °The %
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W.H. Milis, Some Davenport—SbhinzeZ Séquenaes, Congressus Numeratl

1 _ 2n~d+2
(n—2+33) Nd(n) SnNd(n l)+“d_T. 59
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