Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0298 N0110 #129 Sep 14 2024 01:39:01
%S 1,1,2,2,4,2,6,2,6,4,10,2,12,6,4,4,16,6,18,4,6,10,22,2,20,12,18,6,28,
%T 4,30,8,10,16,12,6,36,18,12,4,40,6,42,10,12,22,46,4,42,20,16,12,52,18,
%U 20,6,18,28,58,4,60,30,6,16,12,10,66,16,22,12,70,6,72,36,20,18,30,12,78,4,54
%N Reduced totient function psi(n): least k such that x^k == 1 (mod n) for all x prime to n; also known as the Carmichael lambda function (exponent of unit group mod n); also called the universal exponent of n.
%C a(n) is the largest order of any element in the multiplicative group modulo n. - _Joerg Arndt_, Mar 19 2016
%C Largest period of repeating digits of 1/n written in different bases (i.e., largest value in each row of square array A066799 and least common multiple of each row). - _Henry Bottomley_, Dec 20 2001
%D D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
%D W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 53.
%D Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 269.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A002322/b002322.txt">Table of n, a(n) for n = 1..10000</a>
%H L. Blum, M. Blum, and M. Shub, <a href="http://dx.doi.org/10.1137/0215025">A simple unpredictable pseudorandom number generator</a>, SIAM J. Comput. 15 (1986), no. 2, 364-383. see p. 377.
%H P. J. Cameron and D. A. Preece, <a href="http://www.maths.qmul.ac.uk/~pjc/csgnotes/lambda.pdf">Notes on primitive lambda-roots</a>
%H R. D. Carmichael, <a href="http://dx.doi.org/10.1090/S0002-9904-1910-01892-9">Note on a new number theory function</a>, Bull. Amer. Math. Soc. 16 (1909-10), 232-238.
%H A. Cauchy, Mémoire sur la résolution des équations indéterminées du premier degré en nombres entiers, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k90204r/f12.image.r">Oeuvres Complètes</a>. Gauthier-Villars, Paris, 1882-1938, Series (2), Vol. 12, pp. 9-47.
%H A. de Vries, <a href="http://math-it.org/Mathematik/Zahlentheorie/Zahl/ZahlApplet.html">The prime factors of an integer(along with Euler's phi and Carmichael's lambda functions)</a>, Applet
%H Paul Erdős, Carl Pomerance, and Eric Schmutz, <a href="http://www.math.dartmouth.edu/~carlp/PDF/lambda.pdf">Carmichael's lambda function</a>, Acta Arithmetica 58 (1991), pp. 363-385.
%H J.-H. Evertse and E. van Heyst, <a href="http://dx.doi.org/10.1007/3-540-46877-3_8">Which new RSA signatures can be computed from some given RSA signatures?</a>, Proceedings of Eurocrypt '90, Lect. Notes Comput. Sci., 473, Springer-Verlag, pp. 84-97, see page 86.
%H J. M. Grau and A. M. Oller-Marcén, <a href="http://arxiv.org/abs/1311.3522">On the congruence sum_{j=1}^{n-1} j^{k(n-1)} == -1 (mod n); k-strong Giuga and k-Carmichael numbers</a>, arXiv preprint arXiv:1311.3522 [math.NT], 2013.
%H Romeo Meštrović, <a href="http://arxiv.org/abs/1305.1867">Generalizations of Carmichael numbers I,</a> arXiv:1305.1867v1 [math.NT], May 04 2013.
%H P. Pollack, <a href="https://web.archive.org/web/20130509125813/http://alpha01.dm.unito.it/personalpages/cerruti/ac/notes.pdf">Analytic and Combinatorial Number Theory</a> Course Notes, p. 80.
%H Benjamin Schreyer, <a href="https://arxiv.org/abs/2409.03799">Rigged Horse Numbers and their Modular Periodicity</a>, arXiv:2409.03799 [math.CO], 2024. See p. 12.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CarmichaelFunction.html">Carmichael Function</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Carmichael_function">Carmichael function</a>
%H Wolfram Research, <a href="http://functions.wolfram.com/NumberTheoryFunctions/CarmichaelLambda/03/02">First 50 values of Carmichael lambda(n)</a>
%H <a href="/index/Cor#core">Index entries for "core" sequences</a>
%F If M = 2^e*P1^e1*P2^e2*...*Pk^ek, lambda(2^e) = 2^(e-1) if e=1 or 2, = 2^(e-2) if e > 2; lambda(M) = lcm(lambda(2^e), (P1-1)*P1^(e1-1), (P2-1)*P2^(e2-1), ..., (Pk-1)*Pk^(ek-1)).
%F a(n) = lcm_{k=1..A001221(n)} A207193(A095874(A027748(n,k)^A124010(n,k))). - _Reinhard Zumkeller_, Feb 16 2012
%p with(numtheory); A002322 := lambda; [seq(lambda(n), n=1..100)];
%t Table[CarmichaelLambda[k], {k, 50}] (* _Artur Jasinski_, Apr 05 2008 *)
%o (Magma) [1] cat [ CarmichaelLambda(n) : n in [2..100]];
%o (PARI) A002322(n)= lcm( apply( f -> (f[1]-1)*f[1]^(f[2]-1-(f[1]==2 && f[2]>2)), Vec(factor(n)~))) \\ _M. F. Hasler_, Jul 05 2009
%o (PARI) a(n)=lcm(znstar(n)[2]) \\ _Charles R Greathouse IV_, Aug 04 2012
%o (Haskell)
%o a002322 n = foldl lcm 1 $ map (a207193 . a095874) $
%o zipWith (^) (a027748_row n) (a124010_row n)
%o -- _Reinhard Zumkeller_, Feb 16 2012
%o (Python)
%o from sympy import reduced_totient
%o def A002322(n): return reduced_totient(n) # _Chai Wah Wu_, Feb 24 2021
%Y Cf. A011773, A002174, A002616, A034380, A061258, A062373, A141258, A162578 (partial sums), A218342.
%K nonn,core,easy,nice
%O 1,3
%A _N. J. A. Sloane_