login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005941
Inverse of the Doudna sequence A005940.
(Formerly M0510)
34
1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 17, 12, 33, 18, 11, 16, 65, 14, 129, 20, 19, 34, 257, 24, 13, 66, 15, 36, 513, 22, 1025, 32, 35, 130, 21, 28, 2049, 258, 67, 40, 4097, 38, 8193, 68, 23, 514, 16385, 48, 25, 26, 131, 132, 32769, 30, 37, 72, 259, 1026, 65537, 44, 131073, 2050, 39, 64
OFFSET
1,2
COMMENTS
a(2^k) = 2^k. - Robert G. Wilson v, Feb 22 2005
Fixed points: A029747. - Reinhard Zumkeller, Aug 23 2006
Question: Is there a simple proof that a(c) = c would never allow an odd composite c as a solution? See also A364551. - Antti Karttunen, Jul 30 2023
REFERENCES
J. H. Conway, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = h(g(n,1,1), 0) / 2 + 1 with h(n, m) = if n=0 then m else h(floor(n/2), 2*m + n mod 2) and g(n, i, x) = if n=1 then x else (if n mod prime(i) = 0 then g(n/prime(i), i, 2*x+1) else g(n, i+1, 2*x)). - Reinhard Zumkeller, Aug 23 2006
a(n) = 1 + A156552(n). - Antti Karttunen, Jun 26 2014
MAPLE
A005941 := proc(n)
local k ;
for k from 1 do
if A005940(k) = n then # code reuse
return k;
end if;
end do ;
end proc: # R. J. Mathar, Mar 06 2010
MATHEMATICA
f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; t = Table[ f[n], {n, 10^5}]; Flatten[ Table[ Position[t, n, 1, 1], {n, 64}]] (* Robert G. Wilson v, Feb 22 2005 *)
PROG
(Scheme) (define (A005941 n) (+ 1 (A156552 n))) ;; Antti Karttunen, Jun 26 2014
(Python)
from sympy import primepi, factorint
def A005941(n): return sum((1<<primepi(p)-1)<<i for i, p in enumerate(factorint(n, multiple=True)))+1 # Chai Wah Wu, Mar 11 2023
(PARI) A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552) - Antti Karttunen, Jul 30 2023
CROSSREFS
Cf. A103969. Inverse of A005940. One more than A156552.
Cf. A364559 [= a(n)-n], A364557 (Möbius transform), A364558.
Cf. A029747 [known positions where a(n) = n], A364560 [where a(n) <= n], A364561 [where a(n) <= n and n is odd], A364562 [where a(n) > n], A364548 [where n divides a(n)], A364549 [where odd n divides a(n)], A364550 [where a(n) divides n], A364551 [where a(n) divides n and n is odd].
Sequence in context: A332815 A355405 A372166 * A355460 A355809 A269857
KEYWORD
nonn
EXTENSIONS
More terms from Robert G. Wilson v, Feb 22 2005
a(61) inserted by R. J. Mathar, Mar 06 2010
STATUS
approved

  NODES
eth 1
orte 1
see 2
Story 1