login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005946
Number of n-step mappings with 5 inputs.
(Formerly M5303)
2
1, 52, 358, 1304, 3455, 7556, 14532, 25488, 41709, 64660, 95986, 137512, 191243, 259364, 344240, 448416, 574617, 725748, 904894, 1115320, 1360471, 1643972, 1969628, 2341424, 2763525, 3240276, 3776202, 4376008, 5044579, 5786980, 6608456, 7514432, 8510513, 9602484
OFFSET
1,2
COMMENTS
Hogg & Huberman paper has a misprint a(4)=304. - Sean A. Irvine, Oct 11 2016
REFERENCES
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
B. A. Huberman, T. H. Hogg, & N. J. A. Sloane, Correspondence, 1985
FORMULA
a(n) = h(5,n) where h(n, m) = Sum_{j} (n!/f(j)) * Product_{k=1..n} h(k,m-1)^(j(k)) and the sum runs over all partitions j=(j(1),...,j(n)) of n and f(j) = Product_{k=1..n} j(k)! * (k!)^(j(k)). That is, j satisfies Sum_{k=1..n} k*j(k) = n [From Hogg & Huberman]. - Sean A. Irvine, Oct 11 2016
G.f.: x*(24*x^3+108*x^2+47*x+1)/(1-x)^5. - Alois P. Heinz, Aug 23 2021
MAPLE
b:= proc(n, k) option remember; `if`(k=0, `if`(n<2, 1, 0),
add(Stirling2(n, j)*b(j, k-1), j=0..n))
end:
a:= n-> b(5, n):
seq(a(n), n=1..36); # Alois P. Heinz, Aug 23 2021
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 52, 358, 1304, 3455}, 36] (* Jean-François Alcover, May 20 2022 *)
CROSSREFS
Row n=5 of A144150.
Sequence in context: A264494 A232404 A257940 * A200549 A000527 A294055
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(4) corrected and more terms from Sean A. Irvine, Oct 11 2016
STATUS
approved

  NODES
orte 1
see 1
Story 1