Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3699 #78 Jan 05 2025 19:51:33
%S 1,4,76,439204,84722519070079276,
%T 608130213374088941214747405817720942127490792974404
%N Continued cotangent for the golden ratio.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Harry J. Smith, <a href="/A006267/b006267.txt">Table of n, a(n) for n = 0..7</a>
%H Mohammad K. Azarian, <a href="https://doi.org/10.35834/1998/1003176">Problem 123</a>, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176; <a href="https://doi.org/10.35834/2000/1201050">Solution</a>, ibid., Vol. 12, No. 1 (Winter 2000), pp. 61-62.
%H Jeffrey Shallit, <a href="http://archive.org/details/jresv80Bn2p285">Predictable regular continued cotangent expansions</a>, J. Res. Nat. Bur. Standards Sect. B, Vol. 80B, No. 2 (1976), pp. 285-290.
%H Zalman Usiskin, <a href="https://fq.math.ca/Scanned/11-3/elementary11-3.pdf">Problem B-266</a>, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 11, No. 3 (1973), p. 334; <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/12-3/elementary12-3.pdf">Lucas Numbers for Powers of 3</a>, Solution to Problem B-266 by David Zeitlin, ibid., Vol. 12, No. 3 (1974), p. 315-316.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LehmerCotangentExpansion.html">Lehmer Cotangent Expansion</a>.
%F (1+sqrt(5))/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))); let b(0) = (1+sqrt(5))/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)). - _Benoit Cloitre_, Apr 10 2003
%F a(n) = A000204(3^n). - _Benoit Cloitre_, Sep 18 2005
%F a(n) = round(c^(3^n)) where c = GoldenRatio = 1.6180339887498948482... = (sqrt(5)+1)/2 (A001622). - _Artur Jasinski_, Sep 22 2008
%F a(n) = a(n-1)^3 + 3*a(n-1), a(0) = 1. - _Artur Jasinski_, Sep 24 2008
%F a(n+1) = Product_{k = 0..n} A002813(k). Thus a(n) divides a(n+1). - _Peter Bala_, Nov 22 2012
%F Sum_{n>=0} a(n)^2/A045529(n+1) = 1. - _Amiram Eldar_, Jan 12 2022
%F a(n) = Product_{k=0..n-1} (Lucas(2*3^k) + 1) (Usiskin, 1973). - _Amiram Eldar_, Jan 29 2022
%F From _Peter Bala_, Nov 15 2022: (Start)
%F a(n) = Lucas(3^n) for n >= 1.
%F a(n) == 1 (mod 3) for n >= 1.
%F a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
%F The smallest positive residue of a(n) mod 3^n = A268924(n).
%F In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271223. Cf. A006266. (End)
%p a := proc(n) option remember; if n = 1 then 4 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # _Peter Bala_, Nov 15 2022
%t c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* _Artur Jasinski_, Sep 22 2008 *)
%t a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* _Artur Jasinski_, Sep 24 2008 *)
%o (PARI) a(n)=fibonacci(3^n+1) + fibonacci(3^n-1) \\ _Andrew Howroyd_, Dec 30 2024
%o (PARI) a(n)={my(t=1); for(i=1, n, t = t^3 + 3*t); t} \\ _Andrew Howroyd_, Dec 30 2024
%Y Cf. A000032, A000204, A001622, A001999, A002666, A002667, A002668, A006266, A002813, A045529, A271223, A268924.
%K nonn,easy,changed
%O 0,2
%A _N. J. A. Sloane_
%E The next term is too large to include.