login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006267
Continued cotangent for the golden ratio.
(Formerly M3699)
24
1, 4, 76, 439204, 84722519070079276, 608130213374088941214747405817720942127490792974404
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176; Solution, ibid., Vol. 12, No. 1 (Winter 2000), pp. 61-62.
Jeffrey Shallit, Predictable regular continued cotangent expansions, J. Res. Nat. Bur. Standards Sect. B, Vol. 80B, No. 2 (1976), pp. 285-290.
Zalman Usiskin, Problem B-266, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 11, No. 3 (1973), p. 334; Lucas Numbers for Powers of 3, Solution to Problem B-266 by David Zeitlin, ibid., Vol. 12, No. 3 (1974), p. 315-316.
Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion.
FORMULA
(1+sqrt(5))/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))); let b(0) = (1+sqrt(5))/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)). - Benoit Cloitre, Apr 10 2003
a(n) = A000204(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = round(c^(3^n)) where c = GoldenRatio = 1.6180339887498948482... = (sqrt(5)+1)/2 (A001622). - Artur Jasinski, Sep 22 2008
a(n) = a(n-1)^3 + 3*a(n-1), a(0) = 1. - Artur Jasinski, Sep 24 2008
a(n+1) = Product_{k = 0..n} A002813(k). Thus a(n) divides a(n+1). - Peter Bala, Nov 22 2012
Sum_{n>=0} a(n)^2/A045529(n+1) = 1. - Amiram Eldar, Jan 12 2022
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) + 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 15 2022: (Start)
a(n) = Lucas(3^n) for n >= 1.
a(n) == 1 (mod 3) for n >= 1.
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
The smallest positive residue of a(n) mod 3^n = A268924(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271223. Cf. A006266. (End)
MAPLE
a := proc(n) option remember; if n = 1 then 4 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 15 2022
MATHEMATICA
c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* Artur Jasinski, Sep 22 2008 *)
a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* Artur Jasinski, Sep 24 2008 *)
PROG
(PARI) a(n)=fibonacci(3^n+1) + fibonacci(3^n-1) \\ Andrew Howroyd, Dec 30 2024
(PARI) a(n)={my(t=1); for(i=1, n, t = t^3 + 3*t); t} \\ Andrew Howroyd, Dec 30 2024
KEYWORD
nonn,easy,changed
EXTENSIONS
The next term is too large to include.
STATUS
approved

  NODES
orte 1
see 1
Story 1