login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006530
Gpf(n): greatest prime dividing n, for n >= 2; a(1)=1.
(Formerly M0428)
1111
1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, 29, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23, 7, 71, 3, 73, 37, 5, 19, 11, 13, 79, 5, 3, 41, 83, 7, 17, 43
OFFSET
1,2
COMMENTS
The initial term a(1)=1 is purely conventional: The unit 1 is not a prime number, although it has been considered so in the past. 1 is the empty product of prime numbers, thus 1 has no largest prime factor. - Daniel Forgues, Jul 05 2011
Greatest noncomposite number dividing n, (cf. A008578). - Omar E. Pol, Aug 31 2013
Conjecture: Let a, b be nonzero integers and f(n) denote the maximum prime factor of a*n + b if a*n + b <> 0 and f(n)=0 if a*n + b=0 for any integer n. Then the set {n, f(n), f(f(n)), ...} is finite of bounded size. - M. Farrokhi D. G., Jan 10 2021
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section IV.1.
H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 210.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
K. Alladi and P. Erdős, On an additive arithmetic function, Pacific J. Math., Volume 71, Number 2 (1977), 275-294. MR 0447086 (56 #5401).
G. Back and M. Caragiu, The greatest prime factor and recurrent sequences, Fib. Q., 48 (2010), 358-362.
A. E. Brouwer, Two number theoretic sums, Stichting Mathematisch Centrum. Zuivere Wiskunde, Report ZW 19/74 (1974): 3 pages. [Cached copy, included with the permission of the author]
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.
Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
Nathan McNew, The Most Frequent Values of the Largest Prime Divisor Function, Exper. Math., 2017, Vol. 26, No. 2, 210-224.
David Singmaster, Letter to N. J. A. Sloane, Oct 03 1982.
Eric Weisstein's World of Mathematics, Greatest Prime Factor
FORMULA
a(n) = A027748(n, A001221(n)) = A027746(n, A001222(n)); a(n)^A071178(n) = A053585(n). - Reinhard Zumkeller, Aug 27 2011
a(n) = A000040(A061395(n)). - M. F. Hasler, Jan 16 2015
a(n) = n + 1 - Sum_{k=1..n} (floor((k!^n)/n) - floor(((k!^n)-1)/n)). - Anthony Browne, May 11 2016
n/a(n) = A052126(n). - R. J. Mathar, Oct 03 2016
If A020639(n) = n [when n is 1 or a prime] then a(n) = n, otherwise a(n) = a(A032742(n)). - Antti Karttunen, Mar 12 2017
a(n) has average order Pi^2*n/(12 log n) [Brouwer]. See also A046670. - N. J. A. Sloane, Jun 26 2017
MAPLE
with(numtheory, divisors); A006530 := proc(n) local i, t1, t2, t3, t4, t5; t1 := divisors(n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); t5 := 1; for i from 1 to t4 do if isprime(t3[t4+1-i]) then return t3[t4+1-i]; fi; od; 1; end;
# alternative
A006530 := n->max(1, op(numtheory[factorset](n))); # Peter Luschny, Nov 02 2010
MATHEMATICA
Table[ FactorInteger[n][[ -1, 1]], {n, 100}] (* Ray Chandler, Nov 12 2005 and modified by Robert G. Wilson v, Jul 16 2014 *)
PROG
(PARI) A006530(n)=if(n>1, vecmax(factor(n)[, 1]), 1) \\ Edited to cover n=1. - M. F. Hasler, Jul 30 2015
(Magma) [ #f eq 0 select 1 else f[ #f][1] where f is Factorization(n): n in [1..86] ] // Klaus Brockhaus, Oct 23 2008
(Scheme)
;; The following uses macro definec for the memoization (caching) of the results. A naive implementation of A020639 can be found under that entry. It could be also defined with definec to make it faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
(definec (A006530 n) (let ((spf (A020639 n))) (if (= spf n) spf (A006530 (/ n spf)))))
;; Antti Karttunen, Mar 12 2017
(Python)
from sympy import factorint
def a(n): return 1 if n == 1 else max(factorint(n))
print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Aug 08 2022
(SageMath)
def A006530(n): return list(factor(n))[-1][0] if n > 1 else 1
print([A006530(n) for n in range(1, 87)]) # Peter Luschny, Jan 07 2024
CROSSREFS
Cf. A000040, A020639 (smallest prime divisor), A034684, A028233, A034699, A053585.
Cf. A046670 (partial sums), A104350 (partial products).
See A124661 for "popular" primes.
Sequence in context: A162325 A324371 A197862 * A327398 A323616 A102095
KEYWORD
nonn,nice,easy,core
EXTENSIONS
Edited by M. F. Hasler, Jan 16 2015
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1
Note 1