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We shall also consider two n xn binary matrices to be equivalent if

they generate equivalent binary arrays; see Figure 2.

SEQUENTIAL BINARY ARRAYS I1:

o 001100110011 001100110011
| FURTHER RESULTS ON THE SQUARE GRID 5011001100011 100110011084
: 110011001100 110011001100
ANNE PENFOLD STREET AND ROBERT DAY 110011001100 011001100110
001100110011 001100110011
A periodic binary array is said to be sequential if and only if 601100110011 100110011001
every line of the array is occupied by a given periodic binary sequence, 110011001100 1100211001100
or by some cyclic shift or reversal of this sequence. Such arrays are 1100110021100 011001100110
of interest in connection with expefimental layouts. In this paper, we 0011 0011
extend in two ways our earlier work on arrays built on the square’grid: 0011 1001
first, by enumerating the equivalence classes of sequential arrays with 1100 1100
sequence 0"1; secondly, by studying further properties of sequential 1100 0110
arrays with seqhences 10111000100 and 111011001010000, that is, Figure 1: Sections of two sequential arrays with
the incidence sequences of the difference sets of integers modulo 11 sequence 0 0 1 1, of period 4, and
and 15 respectively. their corresponding matrices.
1. INTRODUCTION
A periodic bincry sequence o, = {a;} of period n 1is a sequence 0011 0011 10 0110 1100
of zeros and ones such that n is the smallest positive integer for 0011 1100 001 0110 1100
which 1100 1100 1001 1001 0011
. 1100 0011 0110 1001 0011
a; = ;g for all 1.
) Figure 2: Some equivalent binary matrices, sequential
A periodic binary array A, = {aij} of period n on the square with sequence 0 0 1 1.

grid is an array each of whose rows and columns is a periodic binary
sequence of period n. Such an array is said to be sequential if the Two binary sequences of length n are said to be necklace
same sequence (or its shifts or reversals) occurs in every row and equivalent if and only if one can be obtained from the other by inter-
column. Sequential arrays on the square grid (and also on triangular changing zeros and ones, or by a cyclic shift or by reversal, or by
some finite sequence of these operaticns. Thus, the equivalence classes
are determined by the action of the group Dzn xsz, the direct product
of the dihedral group of order 2n with the symmetric group of degree
two [4]. A binary sequence is said to be self-complementary if and

only if it can be obtained from its complement by cyclic shift, or by

and hexagonal grids) are of interest in connection with some problems
in agricultural statistics (3,5,6,8,%9]. Examples of sequential arrays
are shown in Figure 1. Any array of period n on the square grid may
be regarded as consisting of repetitions of an nxn matrix: in
particular; if the array is sequential, then its corresponding matrix
has the samevsequenée (or its cyclic shifts or reversals) in every row reversal, or by some finite sequence of these operations, that is,

and column and will also be called sequential. under the action of D alone.
n

2
Hence in order to generate all inequivalent binary sequential

arrays of period n, we start from a complete set of representatives

We shall consider two binary arrays to be equivalent if one can
be obtained from the other by interchanging zeros with ones, or by

rotation or reflection, or by some finite sequence of these operations. of necklace cquivalence classes of binary sequences of length nj; from

/2189
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each binary sequence in this set we generate the inequivalent sequen-
tial nxn matrices. Two matrices are regarded as equivalent if one
can be obtained from the other by a cyclic shift with respect to rows or
columns, by rotation, by transposition, by complementation, or by any
finite sequence of these operations. Thus, if we let u denote the
cyclic rotation of rows that takes row i to row 1i-1 (modulo n), v
the corresponding rotation of columns, w the rotation of the matrix
clockwise through a right-angle, and x transposition, then the equiv-
alence classes are determined by the action of the group H = GxS§,,

‘where for n 2 3,

_ n n 4
G = ‘<u,v,w,x|u =v =w'=x?=1, uv=vu, uw=wv, ux=xv,

-l -1
XW=W'X, VvW=Wu , VX = Xu>.

None of the sequences considered in this paper is self-complementary,
so we are concerned only with the group G, rather than the whole of
H.

We use the notation ak to denote a string of k copies of the
symbol aj; thus 0%1% denotes 00011. For the sequences to which we
refer most frequently, we use the following notation:

n-1
n =0

N 1; 6,, =1011100010 0;

§,111011001010 00 0.

Note that § ,
sets of integers modulo 11 and. 15 respectively.

and §6,, are the incidence sequences of the difference

;‘Any sequential matrix having T, as its sequence is a permutation
matrix, and is denoted by P, . As usual, 0n denotes the nxn matrix

with all entries zero, and J, the nxn matrix with all entries one.

We use the term m-step circulant to mean an nxn matrix such
that

%,50m 7 fionyg
for all i,j = 1,2,...,n, for some fixed m, where subscripts are
added moduloc n. Thus a l-step circulant is just the usual circulant.
Further, we use the term "circulant" to include back-circulant matrices,

since the two are equivalent under the action of the group G.

In Section 2, we enumerate the equivalence classes of permutation
arrays of period n, using Burnside's Lemma. In Section 3, we discuss

proper; ' of sequential arrays with sequences §,,, and §&,5, thu '

extendX results in [2].
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2. COUNTING INEQUIVALENT PERMUTATION ARRAYS

The number of equivalence classes is most easily calculated from

Burnside's Lemma.

Lemma (Burnside [1, p.1911). Let T be a finite group, of order
g, of permutations acting on a finite set S, and let two elements of
S be equivalent if and only if one can be transformed into the other
by a permutation in T. Then the number, T, of inequivalent elements
i8 .

T = é ]I,
tel

where I(t) <8 the number of elements of S left invariant by the

permutation t e T', and the sum is over all g permutations in T.

Now let N be the normal subgroup of the group G generated by
cyclic shifts, that is, N = <u,v> = Zn X2 . We may conveniently regard
G as the union of the eight cosets N, Nw, Nw?, Nw?, Nx, Nwx,
Mw?x, Nw’x. Table 1 gives the contribution of each coset to the value
of 8n?T(n), where T(n) is the number of equivalence classes of

permutation arrays of period n. Thus we have

Theorem 1. The value of T{(n) can be calculated by summing the

appropriate values in Table 1, and dividing by 8n2.

Proof. The proof is an application of Burnside's Lemma to the
set S of permutation arrays of period n, where the group r is G,

defined in Section 1, of order g = 8n2.

The rows and columns of the permutation matrix P are labelled
from 0 to n-1, and the generating transformations u, v, W, X,

of G act on the elements of Pn as follows:

(i,5)u = (i-1,3);
(i,j)v = (i,3-1);
(i,j)w = (j,n-1-1);
(i,j)x = (3,1),

where all operations are carried out modulo n.

A set of n elements of Pn, one from each row and one from
each column, will be called a transversal of Pn, and a set of k < n
elements of Pn’ with at most one from each row and at most one from
each column, will be called extendable. A transversal which consists
of elements {(i,j)}, such that either i+j is Qtant or i-j s
P

constant will be called a diagonal of ne
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Contribution to 8n?.T(n)

% {on/d)}2. (n/a)? ar
d[n

2P (he1)n

n = 2h,
h
27 .nh!(2h+1)? n = 2h+l.
K+ k
27 LkELTT (20-1), n = bk
2=1
" k
2
27(4k+ D) ATT (20-1), n = bk+l
. =1
: k
k+
2% 2K+ D AT (20-1), n o= bk+2
£=1
[0, n = 4k+3

As for Nw.

As for Nwx.

[d/2] L
( % diné(n/d). ] — ,
d[n 2=0 (2d)".2!(d-22)!
n odd,
ld/2] L
} ding(n/d). | —
dfn 2=0 (2d)".2!(d-28)!
n/d odd
n = 4m+2,
lasz2] £
f d'né(n/d). § z n +
| aln £=0 (2d)*.4!(d-22)! d%n
n/d odd n/d even,
n = bm.
As for Nx.

Table 1: see Theorem 1.

d=2h

_ We consider the elements of G, . coset by coset. Note that for
g ¢ 6, |I(g)| is the number of transversals of an nxn array fixed
setwise by g. We let a and B denote integers modulo n.

B

Coset N has typical element u®v®, with action

(i,)uP = (i-a,3-8).

Let d, = ged(a,n) and d, = ged(B,n). Then the order of uavs is

k, where
k = lem[n/d,, n/d,].

The typical orbit is then
(i,j),(i—u,j-B),(i—?u,j-?B),...,(i—(k—l)a,j-(k—l)B).
If d, #d,, then
(i,3) WM 2 (1,5-(n/a)8)
and (n/d,;)B # 0 (mod n).

Hence the orbit contains at least two distinct elements from the same

row, and cannot be extendable.

If d, = d, = d, then the square is partitioned into nd orbits,
each containing n/d elements, and any of these orbits is extendable.
8 .

A transversal fixed by u’v must be a unien of d orbits.

In order to count the number of ways to choose such a transversal,
we observe that the row indices of all the elements of one particular
orbit form the entire congruence class, modulo d, of the integers
modulo n. A similar statement holds true for the column indices.
Hence the nxn square is partitioned into n/dxn/d subsquares,
each containing n/d orbits, and each consisting of elements (i,3),

f (mod d). To choose a transversal we first choose

m

where 1 Z e, .j
d subsquares with row indices congruent to 0,1,2,...,d-1 (mod d);
this choice may be made in d! ways, since any congruence class of
column indices may be associated with each class of row indices.
Within each subsquare,. we choose one of its n/d orbits, and we have
d subsquares. Hence:the total number of transversals possible, for
given o and B, is
(n/d)d.d!.
Since o and B may each be chosen independently in $(n/d)

ways, the total contribution to 8n2.T(n) is

(p(n/d)) 2. (zard.ar.
din

ey
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An example may help to make this clearer. If n =6, a = U,

B =3, themn d, =2, d, =3, k = 6. A typical orbit is

(0,0), (2,3), (4,0), (0,3), (2,0), (4,8); other orbits are translates
of this one. Since each orbit contains more than one element in some
. rows and some columns, it cannot be extended to a transversal. But if
‘n=6,a=4, g=2, then d; =d, =d =12, k =3. A typical orbit:is
(0,0), (2,u), (9,2); the square is partitioned into 12 orbits, each
a translate of this one. We may also regard the square as being
partitioned into four subsquares, where the row and column indices are
.respectively even-even, even-odd, édd-even, odd-odd, and each of these
subsquares is partitioned into three orbits. To obtain a transversal,
we choose either (i) the even-even and odd-odd subsquares,

or (ii) the even-odd and odd-even subsquares.

From each of the two chosen subsquares we choose an orbit in three ways.
Hence the total number of transversals fixed under u'v? is (6/2)2.2!,

Counting arguments for the other cases are similar, and we deal

with them more briefly.
B

Coset Nw? has typical element u%vPw?, with action
. : B (i,5)u%Pw? = (a-1-i,8-1-3).
The typical orbit is_
(i,3), (a-1-i,B8-1-3),

which reduces to a fixed point when

' 2i = a=1 and 2j = B-1, modulo n.
(i) Let n = 2h.

If a and B are both even, any 2-cycle is extendable and no

fixed point occurs. A fixed transversal must consist of h 2-cycles,

and may be chosen in 2h.h! ways. Since a and B may each be chosen

independently in h ways, we have a contribution to 8n?.T(n) of
hz.2" . nt (1)

If o is odd and B is even, no fixed point occurs, and any
2-cycle is extendable except for those of the form (i,,]), (i,,B-1-3)

and (i,,j), (i,,B-1-3j) where 2i, = 2i, = a-1. Hence no fixed trans-

versal is possible.

If « is even and B is odd, the non-extendable 2-cycles are
those in colur i j, and j,, where 2j, = 2j, = B-1. A similar

argument shotl at no fixed transversal is possible.

If a and B are both odd, any of the fixed points (i,,3,),
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(i,,32) (i,,3,), and (i,,],) is extendable, and so is any of the
2-cycles disjoint from rows 1i,, i, and columns j,, J,. Hence a
fixed transversal must consist of two fixed points and (h-1) 2-cycles,
and may be chosen in 2h.(h—l)! ways. As before, we have a contribu-

tion to B8n?.T(n) of
h2. 2", (h-1)1. (2)
Adding (1) and (2) gives a total contribution to 8n?.T(n) of

2h.(h+1)!h, for n = 2h.

(ii) Let n = 2h+1.

For any & and B, let 1i' and Jj' De the unique solutions to
2i = a1 and 2j = B-1. The non-extendable 2-cycles are those in row
i' and column j'. The unique fixed point (i',3"), and any other
2-cycle are extendable. A fixed transversal consists of (i',j') and
h ~ 2-cycles, and may be chosen in Zh.h! ways. Since a and B may
each be chosen independently in 2h+l ways, the total contribution to
8n2.T(n) is

(2h+1)2.2".h1, for n = 2h+1.

B

Coset Nw has typical element u®vPw, with action

(i,50u%P = (3-8,a-1-1).

The typical orbit is the l4-cyrle
(i,j), (j-B,a-1-i), (0-B-1-i,a+B-1-3), (a-1-3,i+B), which in some

cases reduces to a 2-cycle or to a fixed point.

If n is even, and a * B is even, no 2-cycle nor fixed point
can occur. If n is even and a t B is odd, there are two fixed
points and one 2-cycle. These are found from the solutions i, and
i, of 2i = a-f-1.  Since i, =i, +n/2, the fixed points are
(i,;,i,+B) and (i, +n/2, i, +n/2 +B) and the 2-cycle is
(i,, i, +n/2+8), (i, +n/2, i, +B).

If n 1is odd, no 2-cycle can occur, but for each choice of «a

and B, we have the unique fixed point (i',i'+B) where 2i' = a-B-1.

(i) Let n = uk.

If a * B is odd, no Y-cycle intersecting row i, is extendable,
so any fixed transversal would have to include the two fixed points and
the 2-cycle. But this again includes two points in row 1i,, so no

fixed transversal is possible.

If o« ¢+ B is even, any fixed transversal consis 'f k U4-cycles,
all disjoint from the diagonals (j-B,j) and (a-1-j,37/. Hence they

S PR B R L5
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3 k
can be chosen in 2. ] (22-1) ways. Since o and B can be chosen
=1

in %n? = 8k? ways, the total contribution to 8n2(T(n) is
k X .
2% 12, TT (22-1), for n = k.
2=1

(ii) Let n = hk+2.

If a t B 1is even, no fixed transversal is possible, since it

would have to consist of Y-cycles, and 4 J n.

If a ¢t B is odd, a fixed transversal must consist of Kk
4-cycles, together with either two fixed points or one 2-cycle. The
two special points are in rows . i,, i, +n/2 and columns 1i,+8,

i, +n/2 +B. The 4-cycles are chosen to avoid these rows and columns,

and to avoid the diagonals through the two fixed points. Hence there
k+1 k . .
are 2 .TT (22-1) possible fixed transversals. Since o and 8
2=1

can be chosen in Xn? = 2(2k+1)? ways, the total contribution to
8n?.T(n) 1is

k+2. k »
277 (2k+1)2. TT (22-1), for n = Hk+2Z,
2=1

(iii) Let n = L4k+1l.

A fixed transversal must consist of the unique fixed point
(i',i'+B), together with k H4-cycles, chosen to avoid row 1i' and

column .i'+B, and to avoid the diagonals (j-B,j) and (a-1-3,3).
k

Hence the L-cycles can be chosen in 2. TT (22-1) ways, and since any
=1

choices of a and B are permissible, the total contribution to

8n2.T(n) is
Kk
(uk+1)2.2°. T (22-1), for n = uktl,
2=1
(iv) - Let n = uk+3.

No transversal can be made up of one fixed point and a set of
Y4-cycles. : !

Coset Nx has typical element uuva, with action

(i,)uEx = (§-8,1-0).

This leads to a cycle of length dividing 2n, since the orbit has
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(j-B,i-a) at step 1,

(i,j) at step 0,

(i-(a+B), j-(atB)) at step 2,

and in general
(j-(h-1) (a4p)-B, i-(h-1)(a+B)-a) at step 2h-1,
(i-h(a+B), j-h(a+p)) at step 2h.

Let gecd(a+B,n) = d. Two cases arise.

(i) If n/d = 2k-1, then there are essentially three kinds of cycles,

as follows:

the diagonal i = j-(k-1)(a+B)-B is partitioned into d cycles, each

of length n/d, each extendable since it is contained in a diagonal;

the 2k-2 diagonals
i = j-h(a*B)-B, h = 0,1,...,2k-2, h # k-1,

are partitioned into (n-d)/2 cycles, each of length 2n/d, all of
which contain repeated elements from some rows or columns and are hence

not extendable;

the remaining n-(n/d) diagonals are partitioned into n(d-1)/2 cycles,
each of length 2n/d, all of which are extendable.

A transversal fixed by uavsx must consist of a union of 2 of

the extendable (2n/d)-cycles, together with d-22 of the (n/d)-cycles,
where 0 < 2% s d. For given £, we may choose these (n/d)-cycles in
;1 ways. The pows and columns that intersect the 2% 7rejected
(n/d)-cycles must now be covered by the & (2n/d)-cycles. To complete
the counting argument, we count the number of ways that (2n/d)-cycles

could be constructed from the elements of these 2% (n/d)-cycles.

First, we group the 22 (n/d)-cycles into % pairs; ?gni? the
. . )1
ordering of the pairs is unimportant, this can be done 1n _—_;i_—T
(21)".2!
ways. Secondly, if the two cycles in a pair are given by

(il)‘jl)s(iz)jz)" "’(in/d’jn/d)
and

. . . . . . !
(l;iJ;)s(1;,J;))'-':(l;/da]n/d)a

then they may be made to correspond in n/d ways, SO that the startipg
point of the (2n/d)-cycle can be taken as

(i,,3}) or (i ,3;) or or (i,,i},4)

(g
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Hence the £ pairs of (n/d)-cycles 1lead to a choice of (n/d)*
(2n/d)-cycles.

Thus for each divisor d of n, such that n/d is odd, the
£

_Tf__ll______ [g} , for each & with

27.21(d-22)1

0 s 22 s d. Since for given d, we have n.¢$(n/d) choices of a and

B, we have a contribution to 8n?.T(n) of
{d/2] ot

: }.d!n¢(n/d) ¥ 5
d[n 220 (2d)7.21(d-20)!

number of possible choices is

(3)

for n/d odd. Hence for n odd, this is the total contribution.

(ii) If n/d = 2k, . then there are nd/2 (2n/d)-cycles. For a union
of their orbits to form a transversal, we must have (2n/d) |n, that‘is,
2|d. Hence for n = 2 (mod 4), no such divisor d exists, and the
value given in (3) above is again the total contribution to 8n?.T(n).

If n £ 0 (mod 4), let d = 2h. This time there are two kinds
of cycles, as follows:

‘the 2k (= n/d) diagonals

i = j-2(a+B)-B, £ =0,1,...,2k-1,

are partitioned into n/2 cycles, each of length 2n/d, all of which
contain repeated elements from some rows or columns and are hence not
extendable; '

the remaining n-(n/d) diagonals are partitioned into n(d-1)/2 cycles,
each again of length 2n/d, all of which are extendable.
B

A transversal fixed by u%Px must consist of a union of d/2
of the extendable (2n/d)-cycles. We count the number of such trans-
‘versals in the following way. The permutation partitions the set of
all rows into d (= 2h) cyclically-ordered sets, each of n/d elem-
ents, namely )

i, i-(a*B), i-2Ca+B), ..., i-(2k-1)(a+B), for i = 0,1,...,d-1.

(It also acts in the same way on the columns.) We pair these sets of

rows into h sets of pairs; since the ordering of the pairs is unimpor-
1]

(2!)hh!
of rows may be made to correspond in n/d ways, thus the sets

tant, this may be done in ways. Each pair of these cyclic sets

i,, i,-(a+B), i,-2(a+B), .y 1,-(2k-1) (a+B)

B

i,, i,-(atB), i,-2Ca+B), vy 1,-(2k-1)(a+B)
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may be interleaved beginning i,, i,, i,-(a*B), i,-(a+B), ... or

i, i,-(atB), il_(°+B)’ i,-2(a*B), and so on. The relative
ordering of the rows then determines the columns, for if we have the
sequence i,,i,,... of rows, we must start from the point (i ,i,+B8).

h .
Since we have h pairs of cycles to interleave, we have (n/d) choices

here.
Hence we have
h
! d!
(?2h)! (n/d)h - nh
(2!') 'h! (2d) .h!
different fixed transversals. (Notice here that h is fixed for given

d, whereas in the previous case with n/d odd, & could vary.)

Again o and B can be chosen in n.$(n/d) ways, giving an

additional contribution to 8n?.T(n), for n = 0 (mod 4), of

h
dtn.¢(n/d) ——— . (%)
din (2d4) .h!
n/d even, d=2h

Coset Nwx has typical element uavswx, with action

Gi,u%Pux = (a-1-1,3-8).

This leads to a cycle of the form
(i,3), (a-1-i,j-8), (i,3-28), (a-1-1,3-3B) ...,

which is extendable only if it is in fact a fixed point or a 2-cycle.

For a fixed point, we must have 2i = a-1, B = 0; for a 2-cycle,
28 = 0. If B = 0, we can have no fixed trans-

we must have B # 0, =
so that

versal. Otherwise we must have n = 2k, B = k, and a even,

. ~k . .
no row is fixed. TFor given a, we can find k!2 fixed transversals;

since for n = 2k, o can be chosen in k ways, we have alcontrlbutlon

k
to 8n%2.T(n), of k.2 .k!, for n = 2k.
But for n odd, no fixed transversal is possible.
. . . 2
Coset Nw’ gives the same contribution as Nw; similarly HNw'x

3
gives the same as Nx, and Nwx the same as Nw x.

This completes the proof. 0

Values for T(n) are given in Table 2. They were calculated in
two ways: from Theorem 1, and by generating all inequivalent arrays
as described in [2].

This sequence appears to be new, in the sen 'f being not listed

in Sloane [71].
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| n T(n)

1 .
2
3
y
5
6
7

‘ 8

Table 2,
3. SEQUENTIAL MATRICES BASED ON DIFFERENCE SETS

In [2], we characterised certain sequential matrices in terms of
the properties of their sequences. If D ¢ Zn’ the integers modulo n,

then the incidence sequence &§ of D is defined by

§ = dsd ,...5d
where
1, i e D,
di =
0, otherwise.

From [2, Theorem 2] and its corollaries, we can find the values
of m such that m-step circulant sequential arrays exist, when D
is a difference set in Z, However, many non-circulant sequential

arrays exist for én, the incidence sequence of such a difference set.

Some sets of these arrays are related to each other in the follow-
0’ the
incidence sequence of a difference set, then consider the matrix B,
defined by

ing way: if A is an nxn sequential matrix with sequence &

bij s al+(i—l)m,j‘ for i,j = ;,2,-..,n.

If m 1is an element of the multiplier group of D, then [ is also
sequential, with sequence Sn. For n = 7 or 11 and D the quadratic
residues, the symmetry group of B is the same as that of A, but for

larger n, this property no longer holds.

Arrays for &, were listed in [2, Section 5]1. Those for -§
are given in Table 3, and those for §

11
ys in Figure 3 and Table 4. 1In

Table 3, .the notation "1,7,5,3,..." for the class 1 representative

denotes an array with the sequence starting in position 1 of row 1,
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position 7 of row 2, position 5 of row 3, and so on. Ve nuice also that
the only sequential arrays for the quadratic residues modulo 13 and 17

are the m-step circulants.

Number per Symmetries

ﬁi;::r reprgiziiative classp Zf array

1 1,7,5,3,8,11,6,10,2,9,4 22 X

2 1,6,7,2,4,3,5,8,11,9,10 22 wix

3 1,6,3,2,8,7,11,4,5,10,9 22 X

4 1,3,11,7,4,5,6,9,2,10,8 22

5 1,3,5,7,9,11,2,4,6,8,10 Y uv?

6 1,7,2,6,4,8,9,11,10,3,5 22 wzxz

7 1,2,3,4,5,6,7,8,9,10,11 2 uv,w?x

8 1,5,9,2,6,10,3,7,11,4,8 u u?v?

Table 3. Séquential arrays with sequence
§,, = 10111000100.

The arrays for §&,, fall into eight oquivalence classes; the .
class representatives given in Table 3 were the earliest representatives
for each of the classes found by the algorithm given in [2]. Each ?f
the arrays has at least one non-trivial symmetry, and symmetries which

generate its group are listed in the last column.

The arrays for §&,, fall into 64 equivalence classes, which are
shown in Figure 3. Each array is numbered m-n, where m denotes t?e
number of the equivalence class, and n the number of the first matrix
in that class, as generated by the algorithm of [2]. The symmetry

groups of these arrays are listed in Table U.

e I s SN

x

k

1

&

M

®

*

A +
: {
A

5

i




i ‘ i 406

Array . Symmetries
2-2 av™ !, x
61-323 uv',w?x
63-L46YL u2vT?!
31-68 uvT®x
53-21y usvs,w?x
62-3u43 usvs, x
64-707 utvTS wix
1-1,3-3,4-4,

5-7,6-8,8-10,

9-11,12-14,15-18,

19-24,20-33,22-37
24-40,28-45,33-72, roox
34-74,35-75,36-78,
37-81,44-103,45-108,

47-166

u9-170,52-212,} wlx
55-233,60-256

Table 4. Symmetries of the arrays in Figure 3.

not listed have trivial group.

Group order

30
30
15

6

6
6
6

All arrays
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-1 2 ~2 H
o3t
< J !
4 B é
24 , | g
X5 5 . 8%
X 1
p ; 1
P
3 4 -4
1T x| I [
- & 2 I -L # %
i% TF f] - .
- l«,
- ;WL L
h |- LB ] ; .
7. ] A ' . s .
- = s % i
. : W
: .
-7 6 - 8

g%
!

ITFE

Figur~ . Sequential arrays with sequence ¥ ,.
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Figure 3. Sequential arrays with sequence § ,. Figure 3. Sequential arrays with sequence IrE
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26 = 42

25 = 41

19 ~ 24

41

40

28 = 43

27 - 44

34

21

29 = 47

23 ~ 38

Sequential arrays with sequelic

3.

Figure

Sequential arrays with sequence [

3.

Figure
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38 - 83

- 68

31

4) - 88

£ O NS B

- 87

33 - 72

93

42

35 =73

Sequential arrays with sequence &, ¢.

Figure 3.

1

Sequential arrays with sequence §,,.

3.

Figure
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45 - 108

Figure 3.
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Sequential arrays with sequence §

44 - 103

18°

49 - 170
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Figure 3. Sequential arrays with sequence 8, 5-

59 - 255 60 - 256
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Figure 3. S‘ ntial arrays with sequence §,,. ‘ ‘ U
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