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In this note we summarize some well-known properties of natural number idempotents, and we
explain some regularities that occur in certain sequences of idempotents.

1980 Mathematics Subject Classification: 11A07, 11A41.
Keywords & phrases: idempotents, congruences, Chinese remainder theorem.

1. Introduction

In this note we study idempotents in IN. By an idempotent modulo # we mean a number m € IN
such that m? is congruent to m if we calculate modulo n: m? = m mod n (i.e. 3k € IN such
that m2 = m + kn).

The most well-known idempotents are probably 5 and 6, which are the only idempotents
modulo 10; 25 and 76 are the idempotents modulo 10%; and 625 and 376 are the idempotents
modulo 10%. We shall disregard the trivial idempotents, 0 and 1.

In section 2 we give a classification of the idempotents modulo 10%, k > 1, using elementary
notions, like congruences, only. It is well known [1] that the idempotents modulo an arbitrary
base number n can be classified using the prime number decomposition of n and the Chinese
remainder theorem. We state and prove these classification results in section 3. Only in section
3 the reader is assumed to have some familiarity with rings of integers. In section 4 we briefly
study sequences of idempotents modulo n* where k£ € {1,2,...,10} and n = 2a, @ odd, and
prove, completely elementarily, a regularity result concerning these sequences.

2. Idempotents modulo 10*

In this section we classify the idempotents modulo 10%, k¥ > 1, using elementary calculations.

Theorem 2.1.
1. For every k > 1 there are four idempotents modulo 10¥, among which 2 non-trivial ones.
2. If n and m are the two non-trivial idempotents modulo 10%, then n + m = 10% + 1.
3. If n is idempotent modulo 10% and n = 5 modulo 10, then n? is idempotent modulo 10*+1.
4. If n is idempotent modulo 10* and n = 6 modulo 10, and if n* = m - 10 + = mod 10%+!,
in which 0 < m < 10, then (10 — m) - 10* 4+ n is idempotent modulo 10541,

Proof

1. If m-10* + n is idempotent modulo 105*!, with 0 < m < 10 and n < 10%, then it will be
clear that n is idempotent modulo 10%. For, if (m - 10¥ + n)? = m - 10* 4+ n 4 z - 10F*! for some
z, then m? - 10%% + 2mn - 10F + n? = m-10F + n + z - 10¥*1. Modulo 10* this produces n? = n.
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Thus, when searching idempotents modulo 10¥*!, it suffices to look for numbers of the kind
m - 10F 4+ n, with n idempotent modulo 10*.

The proof of part 1 proceeds with induction with respect to k. For k = 1, the only idempotents
are 0, 1, 5 and 6, becanse 22 = 4,32 =9,42 =6, 72 = 9, 82 = 4, and 92 = 1 modulo 10. Now
assume that the theorem holds for some k£ > 1. Then we have:

(m-10%¥ + n)? = (m - 10*¥ 4+ n) mod 10**!
(m - 10%)? + 2mn - 10* 4 n? = (m - 10* + n) mod 10**+!

m(2n — 1)10F = (n — n?) mod 10%*!
n —n?

ToF mod 10.

m(2n — 1) =

The last step is permitted, because:

(i) one can read “+ z -10¥*1” instead of “mod 10¥+!”;

(i1) n — n?® can be divided by 10%, because of the idempotency of n modulo 10*.
Simply dividing the penultimate formula by 10¥ produces the last one.

From the beginning of the proof it very simply follows that n = 0, 1, 5 or 6 modulo 10. This
implies that (2n — 1) = 1 or —1, according to the value of n. From this it follows that for every
n there is exactly one m so that m-10* + n is idempotent modulo 10**!. Forn =0 or 1, m = 0,
which produces the trivial idempotents 0 and 1. Thus, if there are 4 idempotents for some k,
among which 2 non-trivial ones, the same thing holds for £ + 1. This proves part 1.

2. If n is a non-trivial idempotent modulo 10%, then 1 < n < 10* and 1 < 10* + 1 — n < 10F.
Since (10F+1—-n)? = (1-n)? = 1-2n4n% = 1 —n modulo 10%, 10¥ 41 — n is also a non-trivial
idempotent modulo 10*. This one unequals n, because from n = (104 1—n) mod 10* it follows
that 2n = 1 mod 10*, which is false for every n. This immediately produces n + m = 10F +1if
n and m are the non-trivial idempotents modulo 10%.

3. Let m and n be as in part 1. Then it again follows:

(m-10% + n)? = (m - 10* 4+ n) mod 10%*!
(m - 10F)? + 2mn - 10* 4+ n? = (m - 10* + n) mod 10¥+7.
Because n = 5 modulo 10, it follows that 2n = 0 modulo 10, and hence 2mn - 10* = 0 modulo
10%*1. This implies:
(m - 10* + n) = n? mod 10F+!,
which was to be proved.

4. Consider the first two equations mentioned under item 3. If » = 6 modulo 10, then 2n = 2
modulo 10 = 2mn - 10¥ = 2m - 10*¥ modulo 10%*!. Subtracting 2m - 10* from both sides of the
equation produces

((—m) .10% 4 n)z n? mod 10k+1,

or rather
((10 = m) - 10* 4 n)= n® mod 10¥*+1,

which was to be proved. u



3. Idempotents modulo arbitrary n

One may wonder whether there are any non-trivial idempotents modulo other bases than 10F.
The answer is the following:

Theorem 3.1.

Ifn= p'f’ -p§’ ---pf‘, in which p1, pa2, ..., pe are different prime numbers, there are exactly
2% different idempotents modulo n.
Proof

First take n = p*, p prime, ¥ € IN. For an m € IN we write ™ for its representation as an
element of the ring Z/nZ. That is, 3k € IN such that m =™ + kn. If m? =7 in Z/nZ, then
- (M —1) =0, or, in other words, m(m — 1) = ¢ - p* for some integral c. This implies either
p|m or p|m — 1. Those cases can’t occur together, because m and m — 1 are mutually indivisible.
This furthermore implies that p*|m or p¥|m — 1. But this means that 7@ = 0 or ™ = 1. Thus
modulo p* there are only 2 = 2¢ idempotents.

Next the general case. Let R := Z/pf’l X Z[pNZ x---x Z/pf‘l. It is well known that

Z/nZ =~ R (Chinese remainder theorem), in which T € Z/nZ corresponds with (1,1,...,1) €
R. Let (My,M3,...,T¢) be an arbitrary idempotent in R. Then m? = 7; modulo pf‘ for every
i€ {1,2,...,£}. But from the result of the previous paragraph it follows that m; € {0,1} for
every i. And because the idempotent has £ coordinates, there are 2% idempotents in R, and thus

in Z/nZ. n

Corollary 3.2.
1. Let £, n, p; elc. be defined as above. Then there is a group of £ basical idempotents modulo
n so that every idempotent modulo n can simply be written as the sum (modulo n) of zero
or more basical idempotents.

2. These basical idempotents are equal to ni; - Hj#pf", in which m; equals the inverse of
Hj#,-pfj modulo pl*.
Proof
1. (1,0,...,0), (0,1,...,0),..., (0,0,...,1) are ¢ different idempotents in R. It may be clear
that every idempotent in R can simply be written as the sum of a number of these “vectors” (0

is the sum of 0 ones). And because R & Z /nZ, the idempotents in that ring can be written as
the sum (modulo n) of 0 or more basical idempotents.

2. Consider the sum E;=1(T,---J) in R, in which ¢ := n%; ‘H#ip?".. For j #kz one finds on
the j-th coordinate of that sum a 0, because 1 has the additive order pf’ in Z/pj’l, and gisa

multiple of that order. On the i-th coordinate of that sum one finds m; - Hj#pfj modulo pi.

Considering the definition of m;, it follows exactly that there is a 1 on that coordinate. From
the isomorphy of R with Z /nZ it follows that Z?:l 1 = G is a basical idempotent in Z /nZ.

P.S.: 73; is well defined because for every j # ¢ the integer pfj is mutually indivisible with pf",
and thus a unit in Z/pPZ. This also holds for the product H].¢ip§’. n

Examples
1. In the hexadecimal numeration, 0 and 1 are the only idempotents modulo (10%)y6 for every

k.
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2. Let n be 100. p&* = 25 and iy = 25

100. p¥* =4 and 73 = 4
modulo 100. This exactly lines up with the results of section 1.

3Letnbe30p —3 5--15andm1=1_5“1
idempotent modulo 30 pk . pk = 2. 5 =10 and 7, = 10~

basical idempotent modulo 30. p
third basical idempotent modulo 30

The remaining three non-trivial idempotents modulo 30 are: 641

10 + 15 = 25.

4. Sequences of idempotents

! mod 25 = 19 > g =194 = 76 is the other basical idempotent

AT €S

mod 4 =1 = ¢ = 25is one basical idempotent modulo

J

mod 2 = 1 = ¢ = 15 is the first basical
mod 3 =1 = ¢ = 10 is the second

2=92.3=6and m3 =6 1mod5:T:>q:6isthe

10 = 16; 6 + 15 = 21; and

We regard sequences of idempotents constructed m the followmg way: choose an odd number

a € IN and calculate the idempotents modulo (2a) ke{1,2,.
appears. Below we give the sequences for a = 3,5 and 7.

1. For N =10 (a = 5,N = 2a

[ Pleoto. _
HES g i et

25| 76
625! 376
6251 9376
. 90625 | 9376 /
b/// 890625 | 109376
2890625 | 7109376
12890625 | 87109376
212890625 | 787109376
8212890625 | 1787109376
P—

.,10}. An interesting regularity

), the idempotents modulo N! to N0 are

ip JL

2. For N = 6 (a = 3), the idempotents modulo N! to N0 are the following

(on the left: decimal enumeration; on the right: heximal enumeration):

31i4 ﬂ'st Qg% 3

_ 9| 28 13
pr‘),x&rﬁgé 81 136 q 453@ 213
81 | 1216 AL 213

6561 | 1216 50213

20889 | 16768 350213

76545 | 203392 1350213

636417 = 1043200 21350213

3995649 6082048 221350213

24151041 36315136 2221350213

j—;?p ewm @ ‘b{ ewls -
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,E‘: 6{(”]3 ‘5‘\.{6) 2- N’=

4
44
344
5344

5344
205344
4205344
34205344
334205344
3334205344
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3. For N = 14 (a = 7), the idempotents modulo N! to N'® are the following
(on the left: decimal enumeration; on the right: tetradecimal enumeration):

7 8 5 7 8
49 148 37 A8
%’LSCTCHO 2401 344 ?Eq CF” C37 1A8
2401 = 36016 C37 DI1AS
386561 151264 A0C37 3D1AS
5764801 = 1764736 AA0C37 33D1AS8
58471553 = 46941952 7AA0C37 633D1A8
374712065 = 1101076992 37AA0C37 A633D1AS8
4802079233 = 15858967552 337AA0C37 AA633D1AS8
149429406721 = 139825248256 7337AA0C37 6AA633D1AS

One notices that among the non-trivial idempotents modulo (2(1)3 and (2¢)*, two are always
equal in these examples. With regard to this the following result holds:

Theorem 4.1.
Let n = 2a, a odd. Then a* is idempotent modulo n3 and modulo n*.
Proof

1. a* is idempotent modulo 73 (a*)’ mod n® = (a)’ mod 8a®. Now (a*)’ mod 843 = a* if we
can find a k € IN such that a*(a* — 1) = k-8a>. The candidateis k = ﬂ%l, but this is indeed
a natural number, because a is odd, which implies that 8 | a(a—1)(a+1)(¢* +1) = 8| a(a* - 1).
2. a* is idempotent modulo n*: The reasoning is completely analogous to 1. We should find a
k' € IN such that a’(a* — 1) = k' - 16a*. Buta* —1 = (a - 1)(a + 1)(a® + 1) and a is odd, so
either 4 | a — 1 or 4 | @ + 1. This produces 16 | a(a — 1)(a + D +1) =k = % € IN. m
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