Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M5480 #37 Apr 01 2017 05:42:05
%S 1,0,783,8672,65367,371520,1741655,7161696,26567946,90521472,
%T 288078201,864924480,2469235686,6748494912,17746495281,45086909440,
%U 111066966315,266057139456,621284327856,1417338712800,3164665156308
%N McKay-Thompson series of class 3A for the Monster group with a(0) = 0.
%C Expansion of Hauptmodul for X_0^{+}(3).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A007243/b007243.txt">Table of n, a(n) for n = -1..10000</a>
%H J. H. Conway and S. P. Norton, <a href="http://blms.oxfordjournals.org/content/11/3/308.extract">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979) 308-339.
%H N. D. Elkies, <a href="http://www.math.harvard.edu/~elkies/modular.pdf">Elliptic and modular curves over finite fields and related computational issues</a>, in AMS/IP Studies in Advanced Math., 7 (1998), 21-76, esp. p. 39.
%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H J. McKay and H. Strauss, <a href="http://dx.doi.org/10.1080/00927879008823911">The q-series of monstrous moonshine and the decomposition of the head characters</a>, Comm. Algebra 18 (1990), no. 1, 253-278.
%H Yang-Hui He, John McKay, <a href="http://arxiv.org/abs/1505.06742">Sporadic and Exceptional</a>, arXiv:1505.06742 [math.AG], 2015.
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F a(n) = A030197(n) = A045480(n) unless n = 0.
%F a(n) ~ exp(4*Pi*sqrt(n/3)) / (sqrt(2) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Apr 01 2017
%e T3A = 1/q + 783*q + 8672*q^2 + 65367*q^3 + 371520*q^4 + 1741655*q^5 + ...
%t QP = QPochhammer; A = q*O[q]^20; A = (QP[q^3+A]/QP[q+A])^12; s = (1+27*q* A)^2/A - 42*q; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 12 2015, adapted from PARI *)
%o (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^3 + A) / eta(x + A))^12; polcoeff( (1 + 27 * x * A)^2 / A - 42 * x, n))} /* _Michael Somos_, Feb 02 2012 */
%Y Cf. A030197, A045480.
%K nonn,nice,easy
%O -1,3
%A _N. J. A. Sloane_