login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007247
McKay-Thompson series of class 4B for the Monster group.
(Formerly M5305)
5
1, 52, 834, 4760, 24703, 94980, 343998, 1077496, 3222915, 8844712, 23381058, 58359168, 141244796, 327974700, 742169724, 1627202744, 3490345477, 7301071680, 14987511560, 30138820888, 59623576440, 115928963656
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000 (terms 0..500 from Vincenzo Librandi)
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of 4 * q * (1 + k'^2)^2 / (k' * k^2) in powers of q^2 where k is the Jacobian elliptic modulus, k' the complementary modulus and q is the nome.
Expansion of 4 * q^(1/2) * (k'^4 + 4*k^2) / (k'^2 * k) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 22 2011
a(n) = A007249(n) + 64 * A022577(n - 1). - Michael Somos, Jul 22 2011
a(n) ~ exp(2*Pi*sqrt(n)) / (2*n^(3/4)). - Vaclav Kotesovec, Apr 01 2017
EXAMPLE
T4B = 1/q + 52*q + 834*q^3 + 4760*q^5 + 24703*q^7 + 94980*q^9 + ...
MATHEMATICA
a[ n_] := Module[ {m = InverseEllipticNomeQ @ q, e}, e = (1 - m) / (m / 16)^(1/2); SeriesCoefficient[ (e + 64 / e), {q, 0, n - 1/2}]] (* Michael Somos, Jul 11 2011 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ 4 (2 - m)^2 / (m (1 - m)^(1/2)), {q, 0, 2 n - 1}]] (* Michael Somos, Jul 22 2011 *)
QP = QPochhammer; A = (QP[q]/QP[q^2])^12; s = A + 64*(q/A) + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 15 2015, adapted from 2nd PARI script *)
nmax = 30; CoefficientList[Series[64*x*Product[(1 + x^k)^12, {k, 1, nmax}] + Product[1/(1 + x^k)^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 01 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = prod( k=1, (n+1)\2, 1 - x^(2*k - 1), 1 + x * O(x^n))^12; polcoeff( A + 64 * x / A, n))} /* Michael Somos, Jul 22 2011 */
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = (eta(x + A) / eta(x^2 + A))^12; polcoeff( A + 64 * x / A, n))} /* Michael Somos, Nov 11 2006 */
(PARI) { my(q='q+O('q^66), t=(eta(q)/eta(q^2))^12); Vec( t + 64*q/t ) } \\ Joerg Arndt, Apr 02 2017
CROSSREFS
Sequence in context: A264309 A160344 A163691 * A232312 A278001 A083936
KEYWORD
nonn
STATUS
approved

  NODES
orte 1
see 3
Story 1