login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007713
Number of 4-level rooted trees with n leaves.
17
1, 1, 4, 10, 30, 75, 206, 518, 1344, 3357, 8429, 20759, 51044, 123973, 299848, 719197, 1716563, 4070800, 9607797, 22555988, 52718749, 122655485, 284207304, 655894527, 1508046031, 3454808143, 7887768997, 17949709753, 40719611684, 92096461012, 207697731344
OFFSET
0,3
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
B. A. Huberman and T. Hogg, Complexity and adaptation, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.
N. J. A. Sloane, Transforms
FORMULA
Euler transform applied thrice to all-1's sequence.
EXAMPLE
From Gus Wiseman, Oct 11 2018: (Start)
Also the number of multiset partitions of multiset partitions of integer partitions of n. For example, the a(1) = 1 through a(4) = 30 multiset partitions are:
((1)) ((2)) ((3)) ((4))
((11)) ((12)) ((13))
((1)(1)) ((111)) ((22))
((1))((1)) ((1)(2)) ((112))
((1)(11)) ((1111))
((1))((2)) ((1)(3))
((1))((11)) ((2)(2))
((1)(1)(1)) ((1)(12))
((1))((1)(1)) ((2)(11))
((1))((1))((1)) ((1)(111))
((11)(11))
((1))((3))
((2))((2))
((1))((12))
((1)(1)(2))
((2))((11))
((1))((111))
((1)(1)(11))
((11))((11))
((1))((1)(2))
((2))((1)(1))
((1))((1)(11))
((1)(1)(1)(1))
((11))((1)(1))
((1))((1))((2))
((1))((1))((11))
((1))((1)(1)(1))
((1)(1))((1)(1))
((1))((1))((1)(1))
((1))((1))((1))((1))
(End)
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: b0:= etr(1): b1:= etr(b0): a:= etr(b1): seq(a(n), n=0..30); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
i[ n_, m_ ] := 1 /; m==1 || n==0; i[ n_, m_ ] := (i[ n, m ]=1/n Sum[ i[ k, m ] Plus @@ ((# i[ #, m-1 ])& /@ Divisors[ n-k ]), {k, 0, n-1} ]) /; n>0 && m>1
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; b]; b0 = etr[Function[1]]; b1 = etr[b0]; a = etr[b1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 05 2015, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A290353.
Main diagonal of A055886.
Sequence in context: A002220 A222807 A090578 * A058488 A036674 A006357
KEYWORD
easy,nonn
AUTHOR
STATUS
approved

  NODES
games 1
orte 1
see 1
Story 1