login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008233
a(n) = floor(n/4)*floor((n+1)/4)*floor((n+2)/4)*floor((n+3)/4).
14
0, 0, 0, 0, 1, 2, 4, 8, 16, 24, 36, 54, 81, 108, 144, 192, 256, 320, 400, 500, 625, 750, 900, 1080, 1296, 1512, 1764, 2058, 2401, 2744, 3136, 3584, 4096, 4608, 5184, 5832, 6561, 7290, 8100, 9000, 10000, 11000, 12100, 13310, 14641, 15972, 17424, 19008, 20736
OFFSET
0,6
COMMENTS
a(n) is the maximal product of four nonnegative integers whose sum is n. - Andres Cicuttin, Sep 26 2018
LINKS
Dhruv Mubayi, Counting substructures II: Hypergraphs, preprint, 2012.
Dhruv Mubayi, Counting substructures II: Hypergraphs, Combinatorica 33 (2013), no. 5, 591--612. MR3132928.
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,3,-6,3,0,-3,6,-3,0,1,-2,1).
FORMULA
Let b(n) = A002620(n), the quarter-squares. Then this sequence is b(0)*b(0), b(0)*b(1), b(1)*b(1), b(1)*b(2), b(2)*b(2), b(2)*b(3), ...
From R. J. Mathar, Feb 20 2011: (Start)
a(n) = 2*a(n-1) - a(n-2) + 3*a(n-4) - 6*a(n-5) + 3*a(n-6) - 3*a(n-8) + 6*a(n-9) - 3*a(n-10) + a(n-12) - 2*a(n-13) + a(n-14).
G.f.: -x^4*(1+x^6+x^2+2*x^3+x^4) / ( (1+x)^3*(x^2+1)^3*(x-1)^5 ). (End)
Sum_{n>=4} 1/a(n) = 1 + zeta(4). - Amiram Eldar, Jan 10 2023
a(4*n) = n^4. - Bernard Schott, Jan 24 2023
MAPLE
A008233:=n->floor(n/4)*floor((n+1)/4)*floor((n+2)/4)*floor((n+3)/4); seq(A008233(n), n=0..50); # Wesley Ivan Hurt, Dec 31 2013
MATHEMATICA
Table[Floor[n/4]*Floor[(n + 1)/4]*Floor[(n + 2)/4]*Floor[(n + 3)/4], {n, 0, 50}] (* Stefan Steinerberger, Apr 03 2006 *)
Table[Times@@Floor[Range[n, n+3]/4], {n, 0, 50}] (* Harvey P. Dale, Mar 30 2019 *)
PROG
(Haskell)
a008233 n = product $ map (`div` 4) [n..n+3]
-- Reinhard Zumkeller, Jun 08 2011
(Magma) [Floor(n/4)*Floor((n+1)/4)*Floor((n+2)/4)*Floor((n+3)/4): n in [0..50]]; // Vincenzo Librandi, Jun 09 2011
(PARI) a(n) = prod(i=0, 3, (n+i)\4); \\ Altug Alkan, Sep 27 2018
CROSSREFS
Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), this sequence (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
Cf. A013662.
Sequence in context: A305656 A005943 A330131 * A224815 A031923 A304076
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Stefan Steinerberger, Apr 03 2006
STATUS
approved

  NODES
orte 1
see 1
Story 1