login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008297
Triangle of Lah numbers.
108
-1, 2, 1, -6, -6, -1, 24, 36, 12, 1, -120, -240, -120, -20, -1, 720, 1800, 1200, 300, 30, 1, -5040, -15120, -12600, -4200, -630, -42, -1, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, -362880, -1451520, -1693440, -846720, -211680, -28224, -2016, -72, -1, 3628800, 16329600, 21772800, 12700800
OFFSET
1,2
COMMENTS
|a(n,k)| = number of partitions of {1..n} into k lists, where a list means an ordered subset.
Let N be a Poisson random variable with parameter (mean) lambda, and Y_1,Y_2,... independent exponential(theta) variables, independent of N, so that their density is given by (1/theta)*exp(-x/theta), x > 0. Set S=Sum_{i=1..N} Y_i. Then E(S^n), i.e., the n-th moment of S, is given by (theta^n) * L_n(lambda), n >= 0, where L_n(y) is the Lah polynomial Sum_{k=0..n} |a(n,k)| * y^k. - Shai Covo (green355(AT)netvision.net.il), Feb 09 2010
For y = lambda > 0, formula 2) for the Lah polynomial L_n(y) dated Feb 02 2010 can be restated as follows: L_n(lambda) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) lambda. - Shai Covo (green355(AT)netvision.net.il), Feb 10 2010
See A111596 for an expression of the row polynomials in terms of an umbral composition of the Bell polynomials and relation to an inverse Mellin transform and a generalized Dobinski formula. - Tom Copeland, Nov 21 2011
Also the Bell transform of the sequence (-1)^(n+1)*(n+1)! without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016
Named after the Slovenian mathematician and actuary Ivo Lah (1896-1979). - Amiram Eldar, Jun 13 2021
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
Shai Covo, The moments of a compound Poisson process with exponential or centered normal jumps, J. Probab. Stat. Sci., Vol. 7, No. 1 (2009), pp. 91-100.
Theodore S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176; the sequence called {!}^{n+}. For a link to this paper see A000262.
John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
S. Gill Williamson, Combinatorics for Computer Science, Computer Science Press, 1985; see p. 176.
LINKS
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
P. Blasiak, K. A. Penson, and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
P. Blasiak, K. A. Penson, and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Tom Copeland, Lagrange a la Lah, 2011.
Siad Daboul, Jan Mangaldan, Michael Z. Spivey, and Peter J. Taylor, The Lah Numbers and the n-th Derivative of exp(1/x), Math. Mag., Vol. 86, No. 1 (2013), pp. 39-47.
Askar Dzhumadil'daev and Damir Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014-2015. [Version 1 contained many references to the OEIS, which were removed in Version 2. - N. J. A. Sloane, Mar 28 2015]
Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, Vol. 22, No. 4 (2015), #P4.10.
B. S. El-Desouky, Nenad P.Cakić, and Toufik Mansour, Modified approach to generalized Stirling numbers via differential operators, Appl. Math. Lett., Vol. 23, No. 1 (2010), pp. 115-120.
Sen-Peng Eu, Tung-Shan Fu, Yu-Chang Liang, and Tsai-Lien Wong. On xD-Generalizations of Stirling Numbers and Lah Numbers via Graphs and Rooks. arXiv:1701.00600 [math.CO], 2017.
Milan Janjic, Some classes of numbers and derivatives, JIS, Vol. 12 (2009), pp. 09.8.3
Dmitry Karp and Elena Prilepkina, Generalized Stieltjes transforms: basic aspects, arXiv preprint arXiv:1111.4271 [math.CA], 2011.
Dmitry Karp and Elena Prilepkina, Generalized Stieltjes functions and their exact order, Journal of Classical Analysis, Vol. 1, No. 1 (2012), pp. 53-74. - N. J. A. Sloane, Dec 25 2012.
Udita N. Katugampola, A new Fractional Derivative and its Mellin Transform, arXiv preprint arXiv:1106.0965 [math.CA], 2011.
Udita N. Katugampola, Mellin Transforms of the Generalized Fractional Integrals and Derivatives, arXiv preprint arXiv:1112.6031 [math.CA], 2011.
Donald E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78; arXiv:math/9207221 [math.CA], 1992.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
Toufik Mansour and Matthias Schork, Generalized Bell numbers and algebraic differential equations, Pure Math. Appl.(PU. MA), Vol. 23, No. 2 (2012), pp. 131-142.
Toufik Mansour, Matthias Schork, and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.3.
Toufik Mansour and Mark Shattuck, A polynomial generalization of some associated sequences related to set partitions, Periodica Mathematica Hungarica, Vol. 75, No. 2 (December 2017), pp. 398-412.
Toufik Mansour, Augustine Munagi, and Mark Shattuck, Set partitions with colored singleton blocks, Discrete Mathematics Letters, 13. 100, (2024). See p. 100.
Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics, Vol. 13, No. 2 (2019), pp. 495-517.
Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
Jose L. Ramirez and Mark Shattuck, A (p, q)-Analogue of the r-Whitney-Lah Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.6.
Mark Shattuck, Identities for Generalized Whitney and Stirling Numbers, Journal of Integer Sequences, Vol. 20 (2017), Article 17.10.4.
Mark Shattuck, Some formulas for the restricted r-Lah numbers, Annales Mathematicae et Informaticae, Vol. 49 (2018), Eszterházy Károly University Institute of Mathematics and Informatics, pp. 123-140.
Mark Shattuck, Combinatorial Proofs of Some Stirling Number Convolution Formulas, J. Int. Seq., Vol. 25 (2022), Article 22.2.2.
Michael Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq., Vol. 14 (2011) Article 11.9.7.
Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
Bao-Xuan Zhu, Total positivity from a generalized cycle index polynomial, arXiv:2006.14485 [math.CO], 2020.
FORMULA
a(n, m) = (-1)^n*n!*A007318(n-1, m-1)/m!, n >= m >= 1.
a(n+1, m) = (n+m)*a(n, m)+a(n, m-1), a(n, 0) := 0; a(n, m) := 0, n < m; a(1, 1)=1.
a(n, m) = ((-1)^(n-m+1))*L(1, n-1, m-1) where L(1, n, m) is the triangle of coefficients of the generalized Laguerre polynomials n!*L(n, a=1, x). These polynomials appear in the radial l=0 eigen-functions for discrete energy levels of the H-atom.
|a(n, m)| = Sum_{k=m..n} |A008275(n, k)|*A008277(k, m), where A008275 = Stirling numbers of first kind, A008277 = Stirling numbers of second kind. - Wolfdieter Lang
If L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k (a Lah polynomial) then the e.g.f. for L_n(y) is exp(x*y/(1-x)). - Vladeta Jovovic, Jan 06 2001
E.g.f. for the k-th column (unsigned): x^k/(1-x)^k/k!. - Vladeta Jovovic, Dec 03 2002
a(n, k) = (n-k+1)!*N(n, k) where N(n, k) is the Narayana triangle A001263. - Philippe Deléham, Jul 20 2003
From Shai Covo (green355(AT)netvision.net.il), Feb 02 2010: (Start)
We have the following expressions for the Lah polynomial L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k -- exact generalizations of results in A000262 for A000262(n) = L_n(1):
1) L_n(y) = y*exp(-y)*n!*M(n+1,2,y), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind;
2) L_n(y) = exp(-y)* Sum_{m>=0} y^m*[m]^n/m!, n>=0, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial;
3) L_n(y) = (2n-2+y)L_{n-1}(y)-(n-1)(n-2)L_{n-2}(y), n>=2;
4) L_n(y) = y*(n-1)!*Sum_{k=1..n} (L_{n-k}(y) k!)/((n-k)! (k-1)!), n>=1. (End)
The row polynomials are given by D^n(exp(-x*t)) evaluated at x = 0, where D is the operator (1-x)^2*d/dx. Cf. A008277 and A035342. - Peter Bala, Nov 25 2011
n!C(-xD,n) = Lah(n,:xD:) where C(m,n) is the binomial coefficient, xD= x d/dx, (:xD:)^k = x^k D^k, and Lah(n,x) are the row polynomials of this entry. E.g., 2!C(-xD,2)= 2 xD + x^2 D^2. - Tom Copeland, Nov 03 2012
From Tom Copeland, Sep 25 2016: (Start)
The Stirling polynomials of the second kind A048993 (A008277), i.e., the Bell-Touchard-exponential polynomials B_n[x], are umbral compositional inverses of the Stirling polynomials of the first kind signed A008275 (A130534), i.e., the falling factorials, (x)_n = n! binomial(x,n); that is, umbrally B_n[(x).] = x^n = (B.[x])_n.
An operational definition of the Bell polynomials is (xD_x)^n = B_n[:xD:], where, by definition, (:xD_x:)^n = x^n D_x^n, so (B.[:xD_x:])_n = (xD_x)_n = :xD_x:^n = x^n (D_x)^n.
Let y = 1/x, then D_x = -y^2 D_y; xD_x = -yD_y; and P_n(:yD_y:) = (-yD_y)_n = (-1)^n (1/y)^n (y^2 D_y)^n, the row polynomials of this entry in operational form, e.g., P_3(:yD_y:) = (-yD_y)_3 = (-yD_y) (yD_y-1) (yD_y-2) = (-1)^3 (1/y)^3 (y^2 D_y)^3 = -( 6 :yD_y: + 6 :yD_y:^2 + :yD_y:^3 ) = - ( 6 y D_y + 6 y^2 (D_y)^2 + y^3 (D_y)^3).
Therefore, P_n(y) = e^(-y) P_n(:yD_y:) e^y = e^(-y) (-1/y)^n (y^2 D_y)^n e^y = e^(-1/x) x^n (D_x)^n e^(1/x) = P_n(1/x) and P_n(x) = e^(-1/x) x^n (D_x)^n e^(1/x) = e^(-1/x) (:x D_x:)^n e^(1/x). (Cf. also A094638.) (End)
T(n,k) = Sum_{j=k..n} (-1)^j*A008296(n,j)*A360177(j,k). - Mélika Tebni, Feb 02 2023
EXAMPLE
|a(2,1)| = 2: (12), (21); |a(2,2)| = 1: (1)(2). |a(4,1)| = 24: (1234) (24 ways); |a(4,2)| = 36: (123)(4) (6*4 ways), (12)(34) (3*4 ways); |a(4,3)| = 12: (12)(3)(4) (6*2 ways); |a(4,4)| = 1: (1)(2)(3)(4) (1 way).
Triangle:
-1;
2, 1;
-6, -6, -1;
24, 36, 12, 1;
-120, -240, -120, -20, -1; ...
MAPLE
A008297 := (n, m) -> (-1)^n*n!*binomial(n-1, m-1)/m!;
MATHEMATICA
a[n_, m_] := (-1)^n*n!*Binomial[n-1, m-1]/m!; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012, after Maple *)
T[n_, n_] := (-1)^n; T[n_, k_]/; 0<k<n := T[n, k] = k(k+1)/(n-k) T[n, k+1]; Flatten@Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Oliver Seipel, Dec 06 2024 *)
PROG
(Sage)
def A008297_triangle(dim): # computes unsigned T(n, k).
M = matrix(ZZ, dim, dim)
for n in (0..dim-1): M[n, n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n, k] = M[n-1, k-1]+(2+2*k)*M[n-1, k]+((k+1)*(k+2))*M[n-1, k+1]
return M
A008297_triangle(9) # Peter Luschny, Sep 19 2012
(Haskell)
a008297 n k = a008297_tabl !! (n-1) !! (k-1)
a008297_row n = a008297_tabl !! (n-1)
a008297_tabl = [-1] : f [-1] 2 where
f xs i = ys : f ys (i + 1) where
ys = map negate $
zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0]))
-- Reinhard Zumkeller, Sep 30 2014
(PARI) T(n, m) = (-1)^n*n!*binomial(n-1, m-1)/m!
for(n=1, 9, for(m=1, n, print1(T(n, m)", "))) \\ Charles R Greathouse IV, Mar 09 2016
(Perl) use bigint; use ntheory ":all"; my @L; for my $n (1..9) { push @L, map { stirling($n, $_, 3)*(-1)**$n } 1..$n; } say join(", ", @L); # Dana Jacobsen, Mar 16 2017
CROSSREFS
Same as A066667 and A105278 except for signs. Other variants: A111596 (differently signed triangle and (0,0)-based), A271703 (unsigned and (0,0)-based), A089231.
A293125 (row sums) and A000262 (row sums of unsigned triangle).
Columns 1-6 (unsigned): A000142, A001286, A001754, A001755, A001777, A001778.
A002868 gives maximal element (in magnitude) in each row.
A248045 (central terms, negated). A130561 is a natural refinement.
Sequence in context: A048999 A066667 A105278 * A090582 A079641 A373660
KEYWORD
sign,tabl,nice,easy
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1