login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pisot sequence E(8,55), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
1

%I #46 Jun 28 2023 08:23:00

%S 8,55,378,2598,17856,122724,843480,5797224,39844224,273848688,

%T 1882157472,12936036960,88909166592,611071221312,4199882327424,

%U 28865721292416,198393621719040,1363556058068736,9371698078726656,64411524820772352,442699337396994048

%N Pisot sequence E(8,55), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).

%H Colin Barker, <a href="/A010924/b010924.txt">Table of n, a(n) for n = 0..1000</a>

%H D. W. Boyd, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa34/aa3444.pdf">Some integer sequences related to the Pisot sequences</a>, Acta Arithmetica, 34 (1979), 295-305.

%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.

%H Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, <a href="http://www.emis.de/journals/JIS/VOL18/Szczyrba/sz3.html">Analytic Representations of the n-anacci Constants and Generalizations Thereof</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

%H S. B. Ekhad, N. J. A. Sloane, and D. Zeilberger, <a href="http://arxiv.org/abs/1609.05570">Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences</a>, arXiv:1609.05570 [math.NT], 2016.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6, 6).

%F Conjecture: a(n) = 6*a(n-1) + 6*a(n-2), n > 1; a(0)=8, a(1)=55; g.f.: (8+7x)/(1-6x-6x^2). - _Philippe Deléham_, Nov 19 2008

%F Theorem: a(n) = 6*a(n-1) + 6*a(n-2) for n >= 2. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - _N. J. A. Sloane_, Sep 09 2016

%t a[0] = 8; a[1] = 55; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2] + 1/2]; Table[a[n], {n, 0, 20}] (* _Michael De Vlieger_, Jul 27 2016 *)

%t LinearRecurrence[{6,6},{8,55},30] (* _Harvey P. Dale_, Mar 06 2022 *)

%o (PARI) pisotE(nmax, a1, a2) = {

%o a=vector(nmax); a[1]=a1; a[2]=a2;

%o for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));

%o a

%o }

%o pisotE(50, 8, 55) \\ _Colin Barker_, Jul 27 2016

%K nonn,easy

%O 0,1

%A _Simon Plouffe_

  NODES
COMMUNITY 1