login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014209
a(n) = n^2 + 3*n - 1.
26
-1, 3, 9, 17, 27, 39, 53, 69, 87, 107, 129, 153, 179, 207, 237, 269, 303, 339, 377, 417, 459, 503, 549, 597, 647, 699, 753, 809, 867, 927, 989, 1053, 1119, 1187, 1257, 1329, 1403, 1479, 1557, 1637, 1719, 1803, 1889, 1977, 2067, 2159, 2253, 2349, 2447, 2547, 2649
OFFSET
0,2
COMMENTS
Difference between n-th centered hexagonal number and (2*n)^2. - Alonso del Arte, Jul 06 2004
Given the roots to n^2 + 3*n - 1, a = -3.302775..., b = 0.302775...; then a(n) = (n + 3 + a)*(n + 3 + b). Example: a(3) = 17 = (6 - 3.302...)*(6 + 0.302775). - Gary W. Adamson, Jul 29 2009
a(n-1) = n*(n+1) - 3, with a(-1) = -3, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 13 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
Numbers m >= -1 such that 4*m + 13 is a square. - Bruce J. Nicholson, Jul 17 2017
FORMULA
For n > 0: a(n) = A176271(n+1,n). - Reinhard Zumkeller, Apr 13 2010
a(n) = a(n-1) + 2*n + 2, with n > 0, a(0)=-1. - Vincenzo Librandi, Nov 20 2010
From Colin Barker, Feb 12 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (-1+6*x-3*x^2)/(1-x)^3. (End)
Sum_{n>=0} 1/a(n) = 1/3 + tan(sqrt(13)*Pi/2)*Pi/sqrt(13). - Amiram Eldar, Jan 08 2023
E.g.f.: exp(x)*(-1 + 4*x + x^2). - Elmo R. Oliveira, Oct 31 2024
MATHEMATICA
Table[n^2+3*n-1, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Oct 08 2009 *)
CoefficientList[Series[(- 1 + 6 x - 3 x^2)/(1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2013 *)
PROG
(PARI) a(n)=n^2+3*n-1 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
KEYWORD
sign,easy
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1