login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014675
The infinite Fibonacci word (start with 1, apply 1->2, 2->21, take limit).
44
2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2
OFFSET
0,1
COMMENTS
The limiting mean and variance of the first n terms are both equal to the golden ratio (A001622). - Clark Kimberling, Mar 12 2014
Let F = A000045 (Fibonacci numbers). For n >= 3, the first F(n)-2 terms of A014675 form a palindrome; see A001911. If k is not one of the numbers F(n)-2, then the first k terms of A014675 do not form a palindrome. - Clark Kimberling, Jul 14 2014
First differences of A000201. - Tom Edgar, Apr 23 2015 [Editor's note: except for the offset: as for A022342, below. - M. F. Hasler, Oct 13 2017]
Also first differences of A022342 (which starts at offset 1): a(n)=A022342(n+2)-A022342(n+1), n >= 0. Equal to A001468 without its first term: a(n) = A001468(n+1), n >= 0. - M. F. Hasler, Oct 13 2017
The word is a concatenation of three runs: 1, 2, and 22. The limiting proportions of these are respectively 1/2, 1 - phi/2, and (phi - 1)/2, where phi = golden ratio. The mean runlength is (phi + 1)/2. - Clark Kimberling, Dec 26 2010
REFERENCES
D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 35-43. See Table 2.
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7, p. 36.
G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10945 (20 iterations)
M. Bunder and K. Tognetti, On the self matching properties of [j tau], Discrete Math., 241 (2001), 139-151.
D. Gault and M. Clint, "Curiouser and curiouser said Alice. Further reflections on an interesting recursive function, Intern. J. Computer. Math., 26 (1988), 35-43. (Annotated scanned copy)
J. Grytczuk, Infinite semi-similar words, Discrete Math. 161 (1996), 133-141.
G. Melançon, Lyndon factorization of sturmian words, Discr. Math., 210 (2000), 137-149.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
Define strings S(0)=1, S(1)=2, S(n)=S(n-1).S(n-2) for n>=2. Sequence is S(infinity).
a(n) = floor((n+2)*phi) - floor((n+1)*phi) = A000201(n+2) - A000201(n+1), phi = (1 + sqrt(5))/2.
MAPLE
Digits := 50: t := evalf( (1+sqrt(5))/2); A014675 := n->floor((n+2)*t)-floor((n+1)*t);
MATHEMATICA
Nest[ Flatten[ # /. {1 -> 2, 2 -> {2, 1}}] &, {1}, 11] (* Robert G. Wilson v *)
SubstitutionSystem[{1->{2}, 2->{2, 1}}, {1}, {11}][[1]] (* Harvey P. Dale, Jan 01 2023 *)
PROG
(PARI) first(n)=my(v=[1], u); while(#v<n, u=List(); for(i=1, #v, listput(u, 2); if(v[i]==2, listput(u, 1))); v=Vec(u)); v[1..n] \\ Charles R Greathouse IV, Jun 21 2017
(PARI) apply( {A014675(n, r=quadgen(5)-1)=(n+2)\r-(n+1)\r}, [0..99]) \\ - M. F. Hasler, Apr 07 2021, improved on suggestion from Kevin Ryde, Apr 23 2021
(Python)
from math import isqrt
def A014675(n): return (n+2+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 10 2022
CROSSREFS
This is the {2,1} version. The standard form is A003849 (alphabet {0,1}). See also A005614 (alphabet {1,0}), A003842 (alphabet {1,2} instead of {2,1}).
Equals A001468 except for initial term.
Differs from A025143 in many entries starting at entry 8.
First differences of A000201 and of A022342.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Sequence in context: A306260 A180227 A001468 * A308186 A107362 A166332
KEYWORD
nonn,easy,nice
EXTENSIONS
Corrected by N. J. A. Sloane, Nov 07 2001
STATUS
approved

  NODES
orte 1
see 4
Story 1