login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015305
Gaussian binomial coefficient [ n,5 ] for q = -2.
5
1, -21, 903, -25585, 875007, -27125217, 882215391, -28005209505, 899790907743, -28735427761313, 920460637644639, -29439916001972385, 942314556807454559, -30150270336284213409, 964869381941043396447, -30874848551033891160225
OFFSET
5,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
A015305(n) = T[n,5], where T is the triangular array A015109. - M. F. Hasler, Nov 04 2012
G.f.: x^5/((1-x)*(1+2*x)*(1-4*x)*(1+8*x)*(1-16*x)*(1+32*x)). - R. J. Mathar, Aug 03 2016
From G. C. Greubel, Sep 21 2019: (Start)
a(n) = (1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n- 10) -(-2)^(5*n-10))/40095.
E.g.f.: (11*exp(16*x) - 440 + 1024*exp(x) - 704*exp(-2*x) + 110*exp(-8*x) - exp(-32*x))/41057280. (End)
MAPLE
seq((1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n- 10) -(-2)^(5*n-10))/40095, n=5..25); # G. C. Greubel, Sep 21 2019
MATHEMATICA
Table[QBinomial[n, 5, -2], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 5, -2) for n in range(5, 21)] # Zerinvary Lajos, May 27 2009
(PARI) a(n) = (1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n- 10) -(-2)^(5*n-10))/40095 \\ G. C. Greubel, Sep 21 2019
(Magma) [(1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n-10) -(-2)^(5*n-10))/40095: n in [5..25]]; // G. C. Greubel, Sep 21 2019
(GAP) List([5..25], n-> (1 -11*(-2)^(n-4) +55*(-2)^(2*n-7) -55*(-2)^(3*n-9) +11*(-2)^(4*n- 10) -(-2)^(5*n-10))/40095 ); # G. C. Greubel, Sep 21 2019
CROSSREFS
Diagonal k=5 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Sequence in context: A041843 A041840 A012793 * A101732 A006301 A220384
KEYWORD
sign,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1