login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015371
Gaussian binomial coefficient [ n,9 ] for q=-2.
14
1, -341, 232903, -105970865, 57881286463, -28735427761313, 14946527496991519, -7593183562134412385, 3902985682508407194271, -1994425683761796076272481, 1022146087305755916943130783, -523082886040328458081329117025
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..9} ((-2)^(n-i+1)-1)/((-2)^i-1). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(512*x+1)*(64*x-1)*(128*x+1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 02 2016
MATHEMATICA
Table[QBinomial[n, 9, -2], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 9, -2) for n in range(9, 21)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Diagonal k=9 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A309285 A317556 A006107 * A328665 A163582 A239271
KEYWORD
sign,easy
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1