login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015381
Gaussian binomial coefficient [ n,9 ] for q=-9.
13
1, -348678440, 136773736379522605, -52916360230556551635386480, 20504007291105533368839949866598015, -7943538006665671364765186721016327317109448, 3077495169782617972230910362141435994555138110002155
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..9} ((-9)^(n-i+1)-1)/((-9)^i-1). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
Table[QBinomial[n, 9, -9], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 9, -9) for n in range(9, 15)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A316745 A351459 A358705 * A257384 A186628 A032757
KEYWORD
sign,easy
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1