login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015447
Generalized Fibonacci numbers: a(n) = a(n-1) + 11*a(n-2).
21
1, 1, 12, 23, 155, 408, 2113, 6601, 29844, 102455, 430739, 1557744, 6295873, 23431057, 92685660, 350427287, 1369969547, 5224669704, 20294334721, 77765701465, 301003383396, 1156426099511, 4467463316867, 17188150411488
OFFSET
0,3
COMMENTS
The compositions of n in which each positive integer is colored by one of p different colors are called p-colored compositions of n. For n>=2, 12*a(n-2) equals the number of 12-colored compositions of n, with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
FORMULA
a(n) = ( ( (1+3*sqrt(5))/2 )^(n+1) - ( (1-3*sqrt(5))/2 )^(n+1) )/(3*sqrt(5)).
a(n-1) = (1/3)*(-1)^n*Sum_{i=0..n} (-3)^i*Fibonacci(i)*C(n, i). - Benoit Cloitre, Mar 06 2004
a(n) = Sum_{k=0..n} A109466(n,k)*(-11)^(n-k). - Philippe Deléham, Oct 26 2008
G.f.: 1/(1 - x - 11*x^2). - Harvey P. Dale, May 08 2011
a(n) = ( Sum_{1<=k<=n+1, k odd} C(n+1,k)*45^((k-1)/2) )/2^n. - Vladimir Shevelev, Feb 05 2014
MATHEMATICA
Join[{a=1, b=1}, Table[c=b+11*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{1, 11}, {1, 1}, 30] (* or *) CoefficientList[Series[ 1/(1-x-11 x^2), {x, 0, 50}], x] (* Harvey P. Dale, May 08 2011 *)
PROG
(Sage) [lucas_number1(n, 1, -11) for n in range(0, 27)] # Zerinvary Lajos, Apr 22 2009
(Magma) [n le 2 select 1 else Self(n-1) + 11*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 06 2012
(PARI) Vec(1/(1-x-11*x^2)+O(x^99)) \\ Charles R Greathouse IV, Feb 03 2014
CROSSREFS
Sequence in context: A294139 A255766 A333933 * A072822 A239656 A059161
KEYWORD
nonn,easy
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1