login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020704
Pisot sequences E(3,10), P(3,10).
1
3, 10, 33, 109, 360, 1189, 3927, 12970, 42837, 141481, 467280, 1543321, 5097243, 16835050, 55602393, 183642229, 606529080, 2003229469, 6616217487, 21851881930, 72171863277, 238367471761, 787274278560, 2600190307441, 8587845200883, 28363725910090
OFFSET
0,1
LINKS
S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016)
FORMULA
a(n) = 3*a(n-1) + a(n-2) (holds at least up to n = 1000 but is not known to hold in general).
Conjectures from Colin Barker, Jun 05 2016: (Start)
a(n) = (2^(-1-n)*((3-sqrt(13))^n*(-11+3*sqrt(13)) + (3+sqrt(13))^n*(11+3*sqrt(13))))/sqrt(13).
G.f.: (3+x) / (1-3*x-x^2).
(End)
Theorem: For E(3,10), a(n) = 3 a(n - 1) + a(n - 2) for n>=2. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016
MATHEMATICA
RecurrenceTable[{a[0] == 3, a[1] == 10, a[n] == Floor[a[n - 1]^2/a[n - 2] + 1/2]}, a, {n, 0, 30}] (* Bruno Berselli, Feb 05 2016 *)
PROG
(Magma) Exy:=[3, 10]; [n le 2 select Exy[n] else Floor(Self(n-1)^2/Self(n-2) + 1/2): n in [1..30]]; // Bruno Berselli, Feb 05 2016
CROSSREFS
This is a subsequence of A006190.
See A008776 for definitions of Pisot sequences.
Sequence in context: A271943 A255116 A006190 * A289450 A113299 A126931
KEYWORD
nonn
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1