login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023506
Exponent of 2 in prime factorization of prime(n) - 1.
23
0, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 5, 2, 1, 1, 2, 4, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 6, 2, 1, 1, 1, 1, 2, 3, 1, 4, 1, 8, 1, 2, 1, 2, 3, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 5, 1, 1, 2, 1, 1, 2, 2, 4, 3, 1, 2, 1, 4, 1, 1, 6, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 2, 1, 3, 1
OFFSET
1,3
COMMENTS
Also the number of steps to reach an integer starting with prime(n)/2 and iterating the map x->x*ceiling(x). - Benoit Cloitre, Sep 06 2002
Also exponent of 2 in -1 + prime(n)^s for odd exponents s because (-1 + prime(n)^s)/(prime(n) - 1) is odd. - Labos Elemer, Jan 20 2004
First occurrence of 0,1,2,3,4,...: 1, 2, 3, 13, 7, 25, 44, 116, 55, 974, 1581, 2111, 1470, 4289, 10847, 15000, 6543, 91466, 62947, 397907, 498178, ..., for primes 2, 3, 5, 41, 17, 97, 193, 641, 257, 7681, 13313, 18433, 12289, 40961, 114689, 163841, 65537, 1179649, 786433, 5767169, 7340033, .... - Robert G. Wilson v, May 28 2009
LINKS
FORMULA
EXAMPLE
n=25, p(25)=97, A006093(25) = 96 = 2*2*2*2*2*3, so a(25)=5.
MAPLE
A023506:= x -> padic[ordp](ithprime(x)-1, 2):
seq(A023506(x), x=1..1000); # Robert Israel, May 06 2014
MATHEMATICA
f[n_] := Block[{fi = First@ FactorInteger[ Prime@n - 1]}, If[ fi[[1]] == 2, fi[[2]], 0]]; Array[f, 105] (* Robert G. Wilson v, May 28 2009 *)
Table[IntegerExponent[Prime[n] - 1, 2], {n, 110}] (* Bruno Berselli, Aug 05 2013 *)
PROG
(PARI) A023506(n) = {local(m, r); r=0; m=prime(n)-1; while(m%2==0, m=m/2; r++); r} \\ Michael B. Porter, Jan 26 2010
(PARI) forprime(p=2, 700, print1(valuation(p-1, 2), ", ")); \\ Bruno Berselli, Aug 05 2013
(Magma) [Valuation(NthPrime(n)-1, 2): n in [1..110]]; // Bruno Berselli, Aug 05 2013
(Python)
from sympy import prime
def A023506(n): return (~(m:=prime(n)-1)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022
CROSSREFS
Cf. A007814, A000010, A000040, A006093, A057023, A057773 (partial sums).
Subsequence of A001511 (except 1st term).
Sequence in context: A245195 A340191 A182105 * A232089 A141021 A140995
KEYWORD
nonn,easy
STATUS
approved

  NODES
orte 2
see 1
Story 1