Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Apr 30 2020 13:37:26
%S 1,2,3,2,5,2,3,7,2,3,2,5,11,2,3,13,2,7,3,5,2,17,2,3,19,2,5,3,7,2,11,
%T 23,2,3,5,2,13,3,2,7,29,2,3,5,31,2,3,11,2,17,5,7,2,3,37,2,19,3,13,2,5,
%U 41,2,3,7,43,2,11,3,5,2,23,47,2,3,7,2,5,3,17,2,13,53,2,3,5,11,2,7,3,19,2,29,59,2,3,5,61,2,31
%N Irregular triangle in which first row is 1, n-th row (n > 1) lists distinct prime factors of n.
%C Number of terms in n-th row is A001221(n) for n > 1.
%C From _Reinhard Zumkeller_, Aug 27 2011: (Start)
%C A008472(n) = Sum_{k=1..A001221(n)} T(n,k), n>1;
%C A007947(n) = Product_{k=1..A001221(n)} T(n,k);
%C A006530(n) = Max_{k=1..A001221(n)} T(n,k).
%C A020639(n) = Min_{k=1..A001221(n)} T(n,k).
%C (End)
%C Subsequence of A027750 that lists the divisors of n. - _Michel Marcus_, Oct 17 2015
%H T. D. Noe, <a href="/A027748/b027748.txt">Rows n=1..2048 of triangle, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>.
%e Triangle begins:
%e 1;
%e 2;
%e 3;
%e 2;
%e 5;
%e 2, 3;
%e 7;
%e 2;
%e 3;
%e 2, 5;
%e 11;
%e 2, 3;
%e 13;
%e 2, 7;
%e ...
%p with(numtheory): [ seq(factorset(n), n=1..100) ];
%t Flatten[ Table[ FactorInteger[n][[All, 1]], {n, 1, 62}]](* _Jean-François Alcover_, Oct 10 2011 *)
%o (Haskell)
%o import Data.List (unfoldr)
%o a027748 n k = a027748_tabl !! (n-1) !! (k-1)
%o a027748_tabl = map a027748_row [1..]
%o a027748_row 1 = [1]
%o a027748_row n = unfoldr fact n where
%o fact 1 = Nothing
%o fact x = Just (p, until ((> 0) . (`mod` p)) (`div` p) x)
%o where p = a020639 x -- smallest prime factor of x
%o -- _Reinhard Zumkeller_, Aug 27 2011
%o (PARI) print1(1);for(n=2,20,f=factor(n)[,1];for(i=1,#f,print1(", "f[i]))) \\ _Charles R Greathouse IV_, Mar 20 2013
%o (Python)
%o from sympy import primefactors
%o for n in range(2, 101):
%o print([i for i in primefactors(n)]) # _Indranil Ghosh_, Mar 31 2017
%Y Cf. A000027, A001221, A001222 (with repetition), A027746, A141809, A141810.
%Y a(A013939(A000040(n))+1) = A000040(n).
%Y Cf. A020639, A027750.
%Y A284411 gives column medians.
%K nonn,easy,tabf,nice
%O 1,2
%A _N. J. A. Sloane_
%E More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)