Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Oct 27 2024 17:55:05
%S 1,4,6,1,6,3,2,1,4,4,9,6,8,3,6,2,3,4,1,2,6,2,6,5,9,5,4,2,3,2,5,7,2,1,
%T 3,2,8,4,6,8,1,9,6,2,0,4,0,0,6,4,4,6,3,5,1,2,9,5,9,8,8,4,0,8,5,9,8,7,
%U 8,6,4,4,0,3,5,3,8,0,1,8,1,0,2,4,3,0,7,4,9,9,2,7,3,3,7,2,5,5,9
%N Decimal expansion of real number x such that y = Gamma(x) is a minimum.
%C "The gamma function has a minimum at this point. 1.461632144968362341262659542325721328468196204006446351295988409 is the solution of the equation: Psi(x)*Gamma(x)=0. The point y of that function is 0.8856031944108887002788159005825887332079515336699034488712001659". - _Simon Plouffe_
%C Positive root of psi(x) = 0, where psi is the digamma function. - _Charles R Greathouse IV_, May 30 2012
%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.
%H G. C. Greubel, <a href="/A030169/b030169.txt">Table of n, a(n) for n = 1..5000</a>
%H Simon Plouffe, editor, <a href="http://www.gutenberg.org/etext/634">Miscellaneous Mathematical Constants</a> Project Gutenberg, 1996 [see "Minimal y of GAMMA(x)" paragraph].
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>.
%e x = 1.461632144968362..., y = 0.885603194410888...
%p Digits:= 120; fsolve(Psi(x)=0, x); # _Iaroslav V. Blagouchine_, Feb 16 2016
%t First@ RealDigits[ FindMinimum[ Gamma[x], {x, 1.4}, WorkingPrecision -> 2^7][[2, 1, 2]]] (* _Robert G. Wilson v_, Aug 03 2010 *)
%t RealDigits[x /. FindRoot[PolyGamma[x], {x, 1}, WorkingPrecision -> 200]][[1]] (* _Charles R Greathouse IV_, May 30 2012 *)
%o (PARI) solve(x=1,2,psi(x)) \\ _Charles R Greathouse IV_, May 30 2012
%Y Cf. A030171 for value of y.
%K nonn,cons
%O 1,2
%A _Eric W. Weisstein_
%E Additional comments from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 29 2001
%E Broken URL to Project Gutenberg replaced by _Georg Fischer_, Jan 03 2009