login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A031298
Triangle T(n,k): write n in base 10, reverse order of digits.
41
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 0
OFFSET
0,3
COMMENTS
The length of n-th row is given in A055642(n). - Reinhard Zumkeller, Jul 04 2012
According to the formula for T(n,1), columns are numbered starting with 1. One might also number columns starting with the offset 0, as to have the coefficient of 10^k in column k. - M. F. Hasler, Jul 21 2013
LINKS
FORMULA
T(n,1) = A010879(n); T(n,A055642(n)) = A000030(n). - Reinhard Zumkeller, Jul 04 2012
MATHEMATICA
Table[Reverse[IntegerDigits[n]], {n, 0, 50}]//Flatten (* Harvey P. Dale, Mar 07 2023 *)
PROG
(Haskell)
a031298 n k = a031298_tabf !! n !! k
a031298_row n = a031298_tabf !! n
a031298_tabf = iterate succ [0] where
succ [] = [1]
succ (9:ds) = 0 : succ ds
succ (d:ds) = (d + 1) : ds
-- Reinhard Zumkeller, Jul 04 2012
(PARI) T(n, k)=n\10^(k-1)%10 \\ M. F. Hasler, Jul 21 2013
CROSSREFS
Cf. A030308, A030341, A030386, A031235, A030567, A031007, A031045, A031087 for the base-2 to base-9 analogs.
Sequence in context: A252648 A054054 A115353 * A004428 A004429 A338379
KEYWORD
nonn,base,tabf,less,look
EXTENSIONS
Initial 0 and better name by Philippe Deléham, Oct 20 2011
Edited by M. F. Hasler, Jul 21 2013
STATUS
approved

  NODES
orte 1
see 1
Story 1