login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032171
Number of rooted compound windmills (mobiles) of n nodes with no symmetries.
9
1, 1, 1, 2, 4, 10, 23, 59, 148, 385, 1006, 2678, 7170, 19421, 52933, 145364, 401421, 1114713, 3109710, 8713076, 24506121, 69168705, 195849114, 556165311, 1583601840, 4520226558, 12931917204, 37075154703
OFFSET
1,4
COMMENTS
Also the number of locally Lyndon plane trees with n nodes, where a plane tree is locally Lyndon if the sequence of branches directly under any given node is a Lyndon word. - Gus Wiseman, Sep 05 2018
FORMULA
Shifts left under "CHK" (necklace, identity, unlabeled) transform.
From Petros Hadjicostas, Dec 03 2017: (Start)
a(n+1) = (1/n)*Sum_{d|n} mu(n/d)*c(d), where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) with a(1) = c(1) = 1.
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then Sum_{n>=1} a(n+1)*x^n = -Sum_{n>=1} (mu(n)/n)*log(1-A(x^n)).
The g.f. of the auxiliary sequence (c(n): n>=1) is C(x) = Sum_{n>=1} c(n)*x^n = x*(dA(x)/dx)/(1-A(x)) = x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 147*x^6 + 414*x^7 + 1203*x^8 + ...
(End)
EXAMPLE
From Gus Wiseman, Sep 05 2018: (Start)
The a(6) = 10 locally Lyndon plane trees:
(((((o)))))
(((o(o))))
((o((o))))
(o(((o))))
((o)((o)))
((oo(o)))
(o(o(o)))
(oo((o)))
(o(o)(o))
(ooo(o))
(End)
MATHEMATICA
T[n_, k_] := Module[{A}, A[_, _] = 0; If[k < 1 || k > n, 0, For[j = 1, j <= n, j++, A[x_, y_] = x*y - x*Sum[MoebiusMu[i]/i * Log[1 - A [x^i, y^i]] + O[x]^j // Normal , {i, 1, j}]]; Coefficient[Coefficient[A[x, y], x, n], y, k]]];
a[n_] := a[n] = Sum[T[n, k], {k, 1, n}];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 28}] (* Jean-François Alcover, Jun 30 2017, using Michael Somos' code for A055363 *)
LyndonQ[q_]:=Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
lynplane[n_]:=If[n==1, {{}}, Join@@Table[Select[Tuples[lynplane/@c], LyndonQ], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[lynplane[n]], {n, 10}] (* Gus Wiseman, Sep 05 2018 *)
PROG
(PARI)
CHK(p, n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={my(p=O(1)); for(i=1, n, p=1+CHK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018
KEYWORD
nonn,eigen
STATUS
approved

  NODES
orte 1
see 1
Story 1