OFFSET
1,8
COMMENTS
a(n)=1 if and only if the multiplicative group modulo n is cyclic (that is, if n is either 1, 2, 4, or of the form p^k or 2*p^k where p is an odd prime). In other words: a(n)=1 if n is a term of A033948, otherwise a(n) > 1 (and n is a term of A033949). - Joerg Arndt, Jul 14 2012
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
W. D. Banks and F. Luca, On integers with a special divisibility property, Archivum Mathematicum (BRNO) 42 (2006) pp 31-42.
FORMULA
a(A033948(n)) = 1 [Banks & Luca]. - R. J. Mathar, Jul 29 2007
MAPLE
A034380 := n-> phi(n) / lambda(n);
MATHEMATICA
Table[EulerPhi[n]/CarmichaelLambda[n], {n, 1, 200}] (* Geoffrey Critzer, Dec 23 2014 *)
PROG
(PARI) eulerphi(n)/lcm(znstar(n)[2]) \\ Charles R Greathouse IV, Feb 01 2013
(Haskell)
a034380 n = a000010 n `div` a002322 n
-- Reinhard Zumkeller, Sep 02 2014
(Magma) [1] cat [EulerPhi(n) div CarmichaelLambda(n): n in [2..100]]; // Vincenzo Librandi, Jul 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved