login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034380
Ratio of totient to Carmichael's lambda function: a(n) = A000010(n) / A002322(n).
26
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 2, 1, 2, 2, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 4, 1, 1, 6, 2, 4, 2, 1, 2, 2, 2, 1, 4, 1, 1, 2, 2, 2, 2, 1, 8, 1, 1, 1, 4, 4, 1, 2, 4, 1, 2, 6, 2, 2, 1, 2, 4, 1, 1, 2, 2, 1, 2, 1, 4, 4
OFFSET
1,8
COMMENTS
a(n)=1 if and only if the multiplicative group modulo n is cyclic (that is, if n is either 1, 2, 4, or of the form p^k or 2*p^k where p is an odd prime). In other words: a(n)=1 if n is a term of A033948, otherwise a(n) > 1 (and n is a term of A033949). - Joerg Arndt, Jul 14 2012
LINKS
W. D. Banks and F. Luca, On integers with a special divisibility property, Archivum Mathematicum (BRNO) 42 (2006) pp 31-42.
FORMULA
a(n) = A000010(n) / A002322(n).
a(A033948(n)) = 1 [Banks & Luca]. - R. J. Mathar, Jul 29 2007
A002322(n)/A007947(a(n)) = A289624(n). - Antti Karttunen, Jul 17 2017
MAPLE
A034380 := n-> phi(n) / lambda(n);
MATHEMATICA
Table[EulerPhi[n]/CarmichaelLambda[n], {n, 1, 200}] (* Geoffrey Critzer, Dec 23 2014 *)
PROG
(PARI) eulerphi(n)/lcm(znstar(n)[2]) \\ Charles R Greathouse IV, Feb 01 2013
(Haskell)
a034380 n = a000010 n `div` a002322 n
-- Reinhard Zumkeller, Sep 02 2014
(Magma) [1] cat [EulerPhi(n) div CarmichaelLambda(n): n in [2..100]]; // Vincenzo Librandi, Jul 18 2017
KEYWORD
nonn
AUTHOR
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1