login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035360
Number of partitions of n into parts 3k or 3k+1.
6
1, 1, 1, 2, 3, 3, 5, 7, 8, 11, 15, 17, 23, 30, 35, 44, 57, 66, 82, 103, 121, 146, 181, 211, 253, 308, 360, 425, 513, 596, 700, 834, 969, 1127, 1333, 1541, 1786, 2093, 2415, 2781, 3241, 3723, 4273, 4946, 5669, 6476, 7461, 8519, 9705, 11123, 12669, 14379, 16418
OFFSET
0,4
COMMENTS
Euler transform of period 3 sequence [ 1, 0, 1, ...]. - Kevin T. Acres, Apr 28 2018
LINKS
FORMULA
a(n) ~ Gamma(1/3) * exp(2*Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(2/3) * n^(11/12)). - Vaclav Kotesovec, Aug 23 2015
EXAMPLE
1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 8*x^8 + 11*x^9 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/((1 - x^(3*k))*(1 - x^(3*k-2))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 23 2015 *)
nmax = 52; kmax = nmax/3;
s = Flatten[{Range[0, kmax]*3}~Join~{Range[0, kmax]*3 + 1}];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved

  NODES
orte 1
see 1
Story 1