OFFSET
1,4
COMMENTS
Also number of partitions of n such that number of 1's plus number of odd parts is greater than or equal to n. - Vladeta Jovovic, Feb 27 2006
FORMULA
G.f.: -1 + 1/((1-x)*Product_{j>=1} (1-x^(4j))*(1-x^(4j+1))). - Emeric Deutsch, Mar 07 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Gamma(5/4) / (2^(1/4) * 3^(3/8) * Pi^(3/4) * n^(7/8)). - Vaclav Kotesovec, Aug 27 2015
EXAMPLE
a(8)=5 because we have [8],[5,1,1,1],[4,4],[4,1,1,1,1] and [1,1,1,1,1,1,1,1].
MAPLE
g:=-1+1/(1-x)/product((1-x^(4*j))*(1-x^(4*j+1)), j=1..20): gser:=series(g, x=0, 60): seq(coeff(gser, x^n), n=1..56); # Emeric Deutsch, Mar 07 2006
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(4k+4))*(1 - x^(4k+1))), {k, 0, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 27 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved