login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035362
Number of partitions of n into parts 4k or 4k+1.
2
1, 1, 1, 2, 3, 3, 3, 5, 7, 8, 8, 11, 15, 17, 18, 23, 30, 35, 37, 45, 57, 66, 71, 84, 104, 121, 131, 151, 183, 212, 231, 263, 313, 362, 396, 446, 523, 601, 660, 738, 855, 979, 1076, 1196, 1372, 1562, 1719, 1903, 2164, 2454, 2701, 2979, 3363, 3795, 4177, 4594
OFFSET
1,4
COMMENTS
Also number of partitions of n such that number of 1's plus number of odd parts is greater than or equal to n. - Vladeta Jovovic, Feb 27 2006
FORMULA
G.f.: -1 + 1/((1-x)*Product_{j>=1} (1-x^(4j))*(1-x^(4j+1))). - Emeric Deutsch, Mar 07 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Gamma(5/4) / (2^(1/4) * 3^(3/8) * Pi^(3/4) * n^(7/8)). - Vaclav Kotesovec, Aug 27 2015
EXAMPLE
a(8)=5 because we have [8],[5,1,1,1],[4,4],[4,1,1,1,1] and [1,1,1,1,1,1,1,1].
MAPLE
g:=-1+1/(1-x)/product((1-x^(4*j))*(1-x^(4*j+1)), j=1..20): gser:=series(g, x=0, 60): seq(coeff(gser, x^n), n=1..56); # Emeric Deutsch, Mar 07 2006
MATHEMATICA
nmax = 100; Rest[CoefficientList[Series[Product[1/((1 - x^(4k+4))*(1 - x^(4k+1))), {k, 0, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 27 2015 *)
CROSSREFS
Sequence in context: A036024 A036029 A181530 * A042957 A341074 A343885
KEYWORD
nonn
STATUS
approved

  NODES
orte 1
see 1
Story 1