Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 06 2021 22:29:20
%S 0,0,4,14,37,110,324,888,2368,6336,16874,44414,116181,303362,790157,
%T 2051880,5317599,13764133,35586766,91910082,237183164,611701614,
%U 1576773162,4062606255,10463699696,26942811809,69358469092
%N Number of chiral orthoplex n-ominoes in n-2 space.
%C Orthoplex polyominoes are multidimensional polyominoes that do not extend more than two units along any axis.
%F G.f.: (C^2(x) + C(-x^2))^2/8 - C^2(-x^2)/4 - C(-x^4)/4 + C^5(x)/(2-2C(x)) - (C(x)+C(-x^2))*C^2(-x^2)/(2-2C(-x^2)) where C(x) is the generating function for chiral n-ominoes in n-1 space, one cell labeled in A045648.
%e a(6)=4 because there are 4 pairs of chiral hexominoes in 2^4 space.
%t sc[ n_, k_ ] := sc[ n, k ]=c[ n+1-k, 1 ]+If[ n<2k, 0, sc[ n-k, k ](-1)^k ]; c[ 1, 1 ] := 1;
%t c[ n_, 1 ] := c[ n, 1 ]=Sum[ c[ i, 1 ]sc[ n-1, i ]i, {i, 1, n-1} ]/(n-1);
%t c[ n_, k_ ] := c[ n, k ]=Sum[ c[ i, 1 ]c[ n-i, k-1 ], {i, 1, n-1} ];
%t Table[ c[ i, 4 ]/8+Sum[ c[ i, j ], {j, 5, i} ]/2-If[ OddQ[ i ], 0,
%t c[ i/2, 2 ](-1)^(i/2)/8+If[ OddQ[ i/2 ], 0, c[ i/4, 1 ](-1)^(i/4)/4 ]
%t +Sum[ c[ i/2, j ](-1)^(i/2), {j, 3, i/2} ]/2 ]+Sum[ c[ j, 1 ]c[ i-2j, 2 ](-1)^j/4
%t -Sum[ If[ OddQ[ k ], c[ j, (k-1)/2 ]c[ i-2j, 1 ](-1)^j/2, 0 ], {k, 5, i} ],
%t {j, 1, (i-1)/2} ], {i, 4, 30} ]
%Y Cf. A045648, A036367.
%K easy,nice,nonn
%O 4,3
%A _Robert A. Russell_