login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047564
Numbers that are congruent to {1, 3, 4, 5, 6, 7} mod 8.
4
1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 57, 59, 60, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 83, 84, 85, 86, 87
OFFSET
1,2
FORMULA
From Chai Wah Wu, May 30 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.
G.f.: x*(x^5 + x^3 + x + 1)/((x - 1)^2*(x^2 - x + 1)*(x^2 + x + 1)). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (12*n-3-sqrt(3)*(cos((1-4*n)*Pi/6)+3*cos((1+2*n)*Pi/6)))/9.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-4, a(6k-4) = 8k-5, a(6k-5) = 8k-7. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)+1)*Pi/16 + sqrt(2)*log(sqrt(2)+2)/4 - (sqrt(2)+3)*log(2)/8. - Amiram Eldar, Dec 28 2021
MAPLE
A047564:=n->(12*n-3-sqrt(3)*(cos((1-4*n)*Pi/6)+3*cos((1+2*n)*Pi/6)))/9: seq(A047564(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{1, 3, 4, 5, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 16 2016 *)
CoefficientList[Series[(x^5 + x^3 + x + 1) / ((x - 1)^2 (x^2 - x + 1) (x^2 + x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 18 2016 *)
PROG
(Magma) [n : n in [0..100] | n mod 8 in [1, 3, 4, 5, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
Sequence in context: A307712 A048869 A039051 * A154536 A298110 A091815
KEYWORD
nonn,easy
STATUS
approved

  NODES
orte 1
see 1
Story 1