login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {4, 5, 6, 7} mod 8.
9

%I #56 Dec 25 2023 13:45:52

%S 4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31,36,37,38,39,44,45,46,47,

%T 52,53,54,55,60,61,62,63,68,69,70,71,76,77,78,79,84,85,86,87,92,93,94,

%U 95,100,101,102,103,108,109

%N Numbers that are congruent to {4, 5, 6, 7} mod 8.

%C Numbers having a 1 in position 2 of their binary expansion. One of the mystery calculator sequences: A005408, A042964, A047566, A115419, A115420, A115421. - _Jeremy Gardiner_, Jan 22 2006

%H Reinhard Zumkeller, <a href="/A047566/b047566.txt">Table of n, a(n) for n = 1..1000</a>

%H Maths Magic, <a href="https://web.archive.org/web/20201112033017/http://www.counton.org/explorer/mathsmagic/realmystery/">Mystery Calculator</a>.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F G.f.: x*(4+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - _R. J. Mathar_, Oct 08 2011

%F From _Wesley Ivan Hurt_, May 19 2016: (Start)

%F a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.

%F a(n) = (4*n+1-(-1)^n-(-1)^((n+1)/2)-(-1)^(n/2)-(-1)^(-(n+1)/2)-(-1)^(-n/2))/2. (End)

%F E.g.f.: 1 + sin(x) - cos(x) + sinh(x) + 2*x*exp(x). - _Ilya Gutkovskiy_, May 20 2016

%F Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 - 3*log(2)/8. - _Amiram Eldar_, Dec 26 2021

%p A047566:= n-> n+3 + 4*iquo(n-1, 4):

%p seq(A047566(n), n=1..100); # _Alois P. Heinz_, Aug 22 2011

%t Flatten[# + {4, 5, 6, 7}&/@(8Range[0, 14])] (* _Harvey P. Dale_, Feb 02 2011 *)

%o (Haskell)

%o a047566 n = a047566_list !! (n-1)

%o a047566_list = [n | n <- [1..], mod n 8 > 3]

%o -- _Reinhard Zumkeller_, Dec 29 2012

%Y Cf. A003628 (primes).

%Y Mystery calculator sequences: A005408, A042964, A047566, A115419, A115420, A115421.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

  NODES
orte 1
see 1