OFFSET
0,2
COMMENTS
Equals binomial transform of A143095: (1, 4, 2, 8, 4, 16, 8, 32, ...). - Gary W. Adamson, Jul 23 2008
LINKS
T. D. Noe, Table of n, a(n) for n = 0..300
M. Bicknell, A primer on the Pell sequence and related sequences, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.
A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 161-176.
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434.
A. F. Horadam, Pell identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
Tanya Khovanova, Recursive sequences
Index entries for linear recurrences with constant coefficients, signature (2,1)
FORMULA
a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=5.
a(n) = ((4+sqrt(2))(1+sqrt(2))^n - (4-sqrt(2))(1-sqrt(2))^n)/2*sqrt(2).
a(n) = P(n) - 3*P(n+1) + 2*P(n+2). - Creighton Dement, Jan 18 2005
G.f.: (1+3*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008
E.g.f.: exp(x)*(cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - Vaclav Kotesovec, Feb 16 2015
a(n) = 3*Pell(n) + Pell(n+1), where Pell = A000129. - Vladimir Reshetnikov, Sep 27 2016
MAPLE
with(combinat): a:=n->3*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..26); # Zerinvary Lajos, Apr 04 2008
MATHEMATICA
a[n_]:=(MatrixPower[{{1, 2}, {1, 1}}, n].{{4}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{2, 1}, {1, 5}, 30] (* Harvey P. Dale, Nov 05 2011 *)
PROG
(Maxima)
a[0]:1$
a[1]:5$
a[n]:=2*a[n-1]+a[n-2]$
A048655(n):=a[n]$
makelist(A048655(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(PARI) a(n)=([0, 1; 1, 2]^n*[1; 5])[1, 1] \\ Charles R Greathouse IV, Feb 09 2017
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x)/(1-2*x-x^2))); // G. C. Greubel, Jul 26 2018
CROSSREFS
KEYWORD
easy,nice,nonn,changed
AUTHOR
STATUS
approved