login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050244
Numbers k such that 2^k + 3^k is a semiprime.
4
3, 6, 7, 8, 10, 11, 12, 14, 16, 22, 32, 34, 38, 82, 83, 106, 128, 149, 218, 223, 334, 412, 436, 599, 647, 916, 1373, 4414, 7246, 8423, 10118, 10942, 15898, 42422, 65986
OFFSET
1,1
COMMENTS
Empirically, the smaller factor of 2^a(n) + 3^a(n) is a term of A294132 for all known terms. a(34) > 22000. - Hugo Pfoertner, Jul 29 2019
Terms for n >= 34 are probable semiprimes. - Tyler Busby, Feb 18 2023
Empirically, this sequence is a subsequence of A093641. No more terms of A093641 less than 10^5 are in this sequence. - Tyler Busby, Feb 20 2023
EXAMPLE
a(1)=3 because 2^3 + 3^3 = 5 * 7.
a(2)=6 because 2^6 + 3^6 = 13 * 61.
a(3)=7 because 2^7 + 3^7 = 5 * 463.
a(4)=8 because 2^8 + 3^8 = 17 * 401.
a(5)=10 because 2^10 + 3^10 = 13 * 4621.
a(6)=11 because 2^11 + 3^11 = 5 * 35839.
a(7)=12 because 2^12 + 3^12 = 97 * 5521.
a(8)=14 because 2^14 + 3^14 = 13 * 369181.
a(9)=16 because 2^16 + 3^16 = 3041 * 14177.
a(10)=22 because 2^22 + 3^22 = 13 * 2414250301.
a(11)=32 because 2^32 + 3^32 = 1153 * 1607133116929.
a(12)=34 because 2^34 + 3^34 = 13 * 1282861452271981.
a(13)=38 because 2^38 + 3^38 = 13 * 103911691734684541.
a(14)=82 because 2^82 + 3^82 = 13 * 102329189594547549657540565413396038701.
a(15)=83 because 2^83 + 3^83 = 5 * 798167678837469920188160718521149336927.
a(16)=106 because 2^106 + 3^106 = 13 * 28900785585664327723593061693364968422740414514061.
a(17)=128 because 2^128 + 3^128 = 257 * 45876204582640401445607833244277975113391731388650867226881.
a(18)=149 because 2^149 + 3^149 = 5 * 24665899002341798194980052306171212216360861465143461865961807325057879.
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Hugo Pfoertner, May 08 2003
EXTENSIONS
Corrected and extended by Hugo Pfoertner, May 12 2003
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 30 2007
a(28)-a(32) from Sean A. Irvine, Nov 05 2009
a(33) from Hugo Pfoertner, Jul 29 2019
a(34)-a(35) from Tyler Busby, Jan 14 2023
STATUS
approved

  NODES
orte 1
see 1
Story 1