login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053529
a(n) = n! * number of partitions of n.
54
1, 1, 4, 18, 120, 840, 7920, 75600, 887040, 10886400, 152409600, 2235340800, 36883123200, 628929100800, 11769069312000, 230150688768000, 4833164464128000, 105639166144512000, 2464913876705280000, 59606099200327680000, 1525429559126753280000, 40464026199993876480000
OFFSET
0,3
COMMENTS
Commuting permutations: number of ordered pairs (g, h) in Sym(n) such that gh = hg.
Equivalently sum of the order of all normalizers of all cyclic subgroups of Sym(n). - Olivier Gérard, Apr 04 2012
From Gus Wiseman, Jan 16 2019: (Start)
Also the number of Young tableaux with distinct entries from 1 to n, where a Young tableau is an array obtained by replacing the dots in the Ferrers diagram of an integer partition of n with positive integers. For example, the a(3) = 18 tableaux are:
123 213 132 312 231 321
.
12 21 13 31 23 32
3 3 2 2 1 1
.
1 2 1 3 2 3
2 1 3 1 3 2
3 3 2 2 1 1
(End)
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.12, solution.
LINKS
M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, PU.M.A, Volume 24 (2013), Issue No. 1.
M. Holloway, M. Shattuck, Commuting pairs of functions on a finite set, Research Gate, 2015.
R. P. Stanley, Pairs with equal squares, Problem 10654, Amer. Math. Monthly, 107 (April 2000), solution p. 368.
Wikipedia, Young tableau
FORMULA
E.g.f: Sum_{n>=0} x^n/(Product_{k=1..n} 1-x^k) = exp(Sum_{n>=1} (x^n/n)/(1-x^n))). - Joerg Arndt, Jan 29 2011
a(n) = Sum{k=1..n} (((n-1)!/(n-k)!)*sigma(k)*a(n-k)), n > 0, and a(0)=1. See A274760. - Johannes W. Meijer, Jul 28 2016
a(n) ~ sqrt(Pi/6)*exp(sqrt(2/3)*Pi*sqrt(n))*n^n/(2*exp(n)*sqrt(n)). - Ilya Gutkovskiy, Jul 28 2016
MAPLE
seq(count(Permutation(n))*count(Partition(n)), n=1..20); # Zerinvary Lajos, Oct 16 2006
with(combinat): A053529 := proc(n): n! * numbpart(n) end: seq(A053529(n), n=0..20); # Johannes W. Meijer, Jul 28 2016
MATHEMATICA
Table[PartitionsP[n] n!, {n, 0, 20}] (* T. D. Noe, Jun 19 2012 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, x^k/(1-x^k)/k)))) \\ Joerg Arndt, Apr 16 2010
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(sum(n=0, N, x^n/prod(k=1, n, 1-x^k)))) \\ Joerg Arndt, Jan 29 2011
(PARI) a(n) = n!*numbpart(n); \\ Michel Marcus, Jul 28 2016
(Magma) a:= func< n | NumberOfPartitions(n)*Factorial(n) >; [ a(n) : n in [0..25]]; // Vincenzo Librandi, Jan 17 2019
(Python)
from math import factorial
from sympy import npartitions
def A053529(n): return factorial(n)*npartitions(n) # Chai Wah Wu, Jul 10 2023
CROSSREFS
Column k=2 of A362827.
Sequences counting pairs of functions from an n-set to itself: A053529, A181162, A239749-A239785, A239836-A239841.
Sequence in context: A321704 A296982 A222375 * A005442 A306881 A367489
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 16 2000
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1