login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053824
Sum of digits of (n written in base 5).
37
0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 4, 5, 6
OFFSET
0,3
COMMENTS
Also the fixed point of the morphism 0->{0,1,2,3,4}, 1->{1,2,3,4,5}, 2->{2,3,4,5,6}, etc. - Robert G. Wilson v, Jul 27 2006
LINKS
Tanar Ulric, Table of n, a(n) for n = 0..10000 (terms 0..3125=5^5 from Reinhard Zumkeller).
Jeffrey O. Shallit, Problem 6450, Advanced Problems, The American Mathematical Monthly, Vol. 91, No. 1 (1984), pp. 59-60; Two series, solution to Problem 6450, ibid., Vol. 92, No. 7 (1985), pp. 513-514.
Eric Weisstein's World of Mathematics, Digit Sum.
FORMULA
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(5n+i) = a(n) + i for 0 <= i <= 4;
a(n) = n - 4*Sum_{k>=1} floor(n/5^k) = n - 4*A027868(n). (End)
a(n) = A138530(n,5) for n > 4. - Reinhard Zumkeller, Mar 26 2008
If i >= 2, a(2^i) mod 4 = 0. - Washington Bomfim, Jan 01 2011
a(n) = Sum_{k>=0} A031235(n,k). - Philippe Deléham, Oct 21 2011
a(0) = 0; a(n) = a(n - 5^floor(log_5(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 5*log(5)/4 (Shallit, 1984). - Amiram Eldar, Jun 03 2021
EXAMPLE
a(20) = 4 + 0 = 4 because 20 is written as 40 in base 5.
From Omar E. Pol, Feb 21 2010: (Start)
It appears that this can be written as a triangle:
0,
1,2,3,4,
1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8,
1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8,5,6,7,8,9,2,3,4,5,6,3,4,5,6,7,4,5,...
See the conjecture in the entry A000120. (End)
MATHEMATICA
Table[Plus @@ IntegerDigits[n, 5], {n, 0, 100}] (* or *)
Nest[Flatten[ #1 /. a_Integer -> Table[a + i, {i, 0, 4}]] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
f[n_] := n - 4 Sum[Floor[n/5^k], {k, n}]; Array[f, 103, 0]
PROG
(PARI) a(n)=if(n<1, 0, if(n%5, a(n-1)+1, a(n/5)))
(PARI) a(n) = sumdigits(n, 5); \\ Michel Marcus, Aug 24 2019
(Haskell)
a053824 0 = 0
a053824 x = a053824 x' + d where (x', d) = divMod x 5
-- Reinhard Zumkeller, Jan 31 2014
(Magma) [&+Intseq(n, 5):n in [0..100]]; // Marius A. Burtea, Aug 24 2019
CROSSREFS
Sum of digits of n written in bases 2-16: A000120, A053735, A053737, this sequence, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
Cf. A173525. - Omar E. Pol, Feb 21 2010
Cf. A173670 (last nonzero decimal digit of (10^n)!). - Washington Bomfim, Jan 01 2011
Sequence in context: A338493 A280053 A283365 * A033925 A358012 A064866
KEYWORD
base,nonn,look
AUTHOR
Henry Bottomley, Mar 28 2000
STATUS
approved

  NODES
orte 1
see 2
Story 1