login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054941
Number of weakly connected oriented graphs on n labeled nodes.
10
1, 2, 20, 624, 55248, 13982208, 10358360640, 22792648882176, 149888345786341632, 2952810709943411146752, 174416705255313941476193280, 30901060796613886817249881227264, 16422801513633911416125344647746244608, 26183660776604240464418800095675915958222848
OFFSET
1,2
COMMENTS
The triangle of oriented labeled graphs on n>=1 nodes with 1<=k<=n components and row sums A047656 starts:
1;
2, 1;
20, 6, 1;
624, 92, 12, 1;
55248, 3520, 260, 20, 1;
13982208, 354208, 11880, 580, 30, 1; - R. J. Mathar, Apr 29 2019
LINKS
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
FORMULA
E.g.f.: log( Sum_{n >= 0} 3^binomial(n, 2)*x^n/n! ). - Vladeta Jovovic, Feb 14 2003
MATHEMATICA
nn=20; s=Sum[3^Binomial[n, 2]x^n/n!, {n, 0, nn}];
Drop[Range[0, nn]! CoefficientList[Series[Log[s]+1, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Oct 22 2012 *)
PROG
(PARI) N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ Seiichi Manyama, May 18 2019
(Magma)
m:=30;
f:= func< x | (&+[3^Binomial(n, 2)*x^n/Factorial(n) : n in [0..m+3]]) >;
R<x>:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( Log(f(x)) ))); // G. C. Greubel, Apr 28 2023
(SageMath)
m=30
def f(x): return sum(3^binomial(n, 2)*x^n/factorial(n) for n in range(m+4))
def A054941_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( log(f(x)) ).egf_to_ogf().list()
a=A054941_list(40); a[1:] # G. C. Greubel, Apr 28 2023
CROSSREFS
Row sums of A350732.
The unlabeled version is A086345.
Cf. A001187 (graphs), A003027 (digraphs), A350730 (strongly connected).
Sequence in context: A197743 A009182 A015207 * A012495 A168480 A364886
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 24 2000
EXTENSIONS
More terms from Vladeta Jovovic, Feb 14 2003
STATUS
approved

  NODES
orte 1
see 1
Story 1