login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056941
Number of antichains (or order ideals) in the poset 5*m*n or plane partitions with not more than m rows, n columns and entries <= 5.
18
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 56, 196, 56, 1, 1, 126, 1176, 1176, 126, 1, 1, 252, 5292, 14112, 5292, 252, 1, 1, 462, 19404, 116424, 116424, 19404, 462, 1, 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1, 1, 1287, 169884, 3737448, 16818516, 16818516, 3737448, 169884, 1287, 1
OFFSET
0,5
COMMENTS
Triangle of generalized binomial coefficients (n,k)_5; cf. A342889. - N. J. A. Sloane, Apr 03 2021
REFERENCES
Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
P. A. MacMahon, Combinatory Analysis, Section 495, 1916.
R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1
LINKS
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
P. A. MacMahon, Combinatory analysis.
FORMULA
From Peter Bala, Oct 13 2011: (Start)
A(n, k) = Product_{j=0..4} C(n+k+j, k+j)/C(n+j, j) gives the array as a square.
g(n-1, k-1)*g(n, k+1)*g(n+1, k) = g(n-1, k)*g(n, k-1)*g(n+1, k+1) where g(n, k) is the array A(n, k) and triangle T(n, k).
Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
From Peter Bala, May 10 2012: (Start)
Determinants of 5 X 5 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present).
Also determinants of 5 X 5 arrays whose entries come from a single row:
det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3), C(n,k-4); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+4), C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. (End)
From G. C. Greubel, Nov 14 2022: (Start)
T(n, k) = Product_{j=0..4} binomial(n+j, k)/binomial(k+j, k) (gives the triangle).
Sum_{k=0..n} T(n, k) = A005363(n). (End)
EXAMPLE
The array starts:
[1 1 1 1 1 1 1 ...]
[1 6 21 56 126 252 462 ...]
[1 21 196 1176 5292 19404 60984 ...]
[1 56 1176 14112 116424 731808 3737448 ...]
[1 126 5292 116424 1646568 16818516 133613766 ...]
[1 252 19404 731808 16818516 267227532 3184461423 ...]
[1 462 60984 3737448 133613766 3184461423 55197331332 ...]
[...]
Considered as a triangle, the initial rows are:
1;
1, 1;
1, 6, 1;
1, 21, 21, 1;
1, 56, 196, 56, 1;
1, 126, 1176, 1176, 126, 1;
1, 252, 5292, 14112, 5292, 252, 1;
1, 462, 19404, 116424, 116424, 19404, 462, 1;
1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1; ...
MATHEMATICA
T[n_, k_] := Product[Binomial[n+j, k]/Binomial[k+j, k], {j, 0, 4}];
Table[T[n, k], {n, 0, 13}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 14 2022 *)
PROG
(PARI) A056941(n, m)=prod(k=0, 4, binomial(n+m+k, m+k)/binomial(n+k, k)) \\ as an array \\ M. F. Hasler, Sep 26 2018
(Magma)
A056941:= func< n, k | (&*[Binomial(n+j, k)/Binomial(k+j, k): j in [0..4]]) >;
[A056941(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 14 2022
(SageMath)
def A056941(n, k): return product(binomial(n+j, k)/binomial(k+j, k) for j in (0..4))
flatten([[A056941(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 14 2022
CROSSREFS
Antidiagonals sum to A005363 (Hoggatt sequence).
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
Sequence in context: A144066 A363849 A296827 * A157638 A347975 A142596
KEYWORD
nonn,easy,tabl
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, Sep 26 2018
STATUS
approved

  NODES
COMMUNITY 1
Idea 1
idea 1
INTERN 1