Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #64 Sep 18 2023 02:03:07
%S 1,1,1,4,1,1,1,8,9,1,1,4,1,1,1,16,1,9,1,4,1,1,1,8,25,1,27,4,1,1,1,32,
%T 1,1,1,36,1,1,1,8,1,1,1,4,9,1,1,16,49,25,1,4,1,27,1,8,1,1,1,4,1,1,9,
%U 64,1,1,1,4,1,1,1,72,1,1,25,4,1,1,1,16,81,1,1,4,1,1,1,8,1,9,1,4,1,1,1,32,1
%N Powerful (1) part of n: if n = Product_i (pi^ei) then a(n) = Product_{i : ei > 1} (pi^ei); if n=b*c^2*d^3 then a(n)=c^2*d^3 when b is minimized.
%H Antti Karttunen, <a href="/A057521/b057521.txt">Table of n, a(n) for n = 1..16383</a> (first 1000 terms from T. D. Noe)
%H Antti Karttunen, <a href="/A057521/a057521.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H Christian Krause, <a href="https://github.com/ckrause/loda">LODA, an assembly language, a computational model and a tool for mining integer sequences</a>.
%H Victor Ufnarovski and Bo Åhlander, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.html">How to Differentiate a Number</a>, J. Integer Seq., Vol. 6 (2003), Article 03.3.4.
%H <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
%F a(n) = n / A055231(n).
%F Multiplicative with a(p)=1 and a(p^e)=p^e for e>1. - _Vladeta Jovovic_, Nov 01 2001
%F From _Antti Karttunen_, Nov 22 2017: (Start)
%F a(n) = A064549(A003557(n)).
%F A003557(a(n)) = A003557(n).
%F (End)
%F a(n) = gcd(n, A003415(n)^k), for all k >= 2. [This formula was found in the form k=3 by Christian Krause's LODA miner. See Ufnarovski and Åhlander paper, Theorem 5 on p. 4 for why this holds] - _Antti Karttunen_, Mar 09 2021
%F Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + 1/p^s - 1/ p^(s-1) + 1/p^(2*s-2) - 1/p^(2*s-1)). - _Amiram Eldar_, Sep 18 2023
%e a(40) = 8 since 40 = 2^3 * 5 so the powerful part is 2^3 = 8.
%p A057521 := proc(n)
%p local a,d,e,p;
%p a := 1;
%p for d in ifactors(n)[2] do
%p e := d[1] ;
%p p := d[2] ;
%p if e > 1 then
%p a := a*p^e ;
%p end if;
%p end do:
%p return a;
%p end proc: # _R. J. Mathar_, Jun 09 2016
%t rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := n/Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 97}] (* _Jean-François Alcover_, Jun 20 2013 *)
%t f[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 21 2020 *)
%o (PARI) a(n)=my(f=factor(n));prod(i=1,#f~,if(f[i,2]>1,f[i,1]^f[i,2],1)) \\ _Charles R Greathouse IV_, Aug 13 2013
%o (PARI) a(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,2]==1, f[i,1]=1)); factorback(f); \\ _Michel Marcus_, Jan 29 2021
%o (Python)
%o from sympy import factorint, prod
%o def a(n): return 1 if n==1 else prod(1 if e==1 else p**e for p, e in factorint(n).items())
%o print([a(n) for n in range(1, 51)]) # _Indranil Ghosh_, Jul 19 2017
%o (Python)
%o from math import prod
%o from sympy import factorint
%o def A057521(n): return n//prod(p for p, e in factorint(n).items() if e == 1) # _Chai Wah Wu_, Nov 14 2022
%Y Cf. A001694, A003415, A003557, A055231, A064549.
%K nonn,mult,easy
%O 1,4
%A _Henry Bottomley_, Sep 01 2000