login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057521
Powerful (1) part of n: if n = Product_i (pi^ei) then a(n) = Product_{i : ei > 1} (pi^ei); if n=b*c^2*d^3 then a(n)=c^2*d^3 when b is minimized.
82
1, 1, 1, 4, 1, 1, 1, 8, 9, 1, 1, 4, 1, 1, 1, 16, 1, 9, 1, 4, 1, 1, 1, 8, 25, 1, 27, 4, 1, 1, 1, 32, 1, 1, 1, 36, 1, 1, 1, 8, 1, 1, 1, 4, 9, 1, 1, 16, 49, 25, 1, 4, 1, 27, 1, 8, 1, 1, 1, 4, 1, 1, 9, 64, 1, 1, 1, 4, 1, 1, 1, 72, 1, 1, 25, 4, 1, 1, 1, 16, 81, 1, 1, 4, 1, 1, 1, 8, 1, 9, 1, 4, 1, 1, 1, 32, 1
OFFSET
1,4
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16383 (first 1000 terms from T. D. Noe)
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seq., Vol. 6 (2003), Article 03.3.4.
FORMULA
a(n) = n / A055231(n).
Multiplicative with a(p)=1 and a(p^e)=p^e for e>1. - Vladeta Jovovic, Nov 01 2001
From Antti Karttunen, Nov 22 2017: (Start)
a(n) = A064549(A003557(n)).
A003557(a(n)) = A003557(n).
(End)
a(n) = gcd(n, A003415(n)^k), for all k >= 2. [This formula was found in the form k=3 by Christian Krause's LODA miner. See Ufnarovski and Åhlander paper, Theorem 5 on p. 4 for why this holds] - Antti Karttunen, Mar 09 2021
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 + 1/p^s - 1/ p^(s-1) + 1/p^(2*s-2) - 1/p^(2*s-1)). - Amiram Eldar, Sep 18 2023
EXAMPLE
a(40) = 8 since 40 = 2^3 * 5 so the powerful part is 2^3 = 8.
MAPLE
A057521 := proc(n)
local a, d, e, p;
a := 1;
for d in ifactors(n)[2] do
e := d[1] ;
p := d[2] ;
if e > 1 then
a := a*p^e ;
end if;
end do:
return a;
end proc: # R. J. Mathar, Jun 09 2016
MATHEMATICA
rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := n/Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 97}] (* Jean-François Alcover, Jun 20 2013 *)
f[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
PROG
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)) \\ Charles R Greathouse IV, Aug 13 2013
(PARI) a(n) = my(f=factor(n)); for (i=1, #f~, if (f[i, 2]==1, f[i, 1]=1)); factorback(f); \\ Michel Marcus, Jan 29 2021
(Python)
from sympy import factorint, prod
def a(n): return 1 if n==1 else prod(1 if e==1 else p**e for p, e in factorint(n).items())
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
(Python)
from math import prod
from sympy import factorint
def A057521(n): return n//prod(p for p, e in factorint(n).items() if e == 1) # Chai Wah Wu, Nov 14 2022
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Henry Bottomley, Sep 01 2000
STATUS
approved

  NODES
orte 1
see 2
Story 1