login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059279
G.f. is ((1-x)/(1-2*x)) * G(x*(1-x)/(1-2*x)) where G(x) is g.f. for Catalan numbers A000108.
2
1, 2, 6, 20, 72, 276, 1112, 4656, 20080, 88608, 398144, 1815248, 8375904, 39037120, 183493440, 868853120, 4140414720, 19841656960, 95559048960, 462268075520, 2245165391360, 10943794652160, 53519094753280, 262510076263680, 1291131867203072
OFFSET
0,2
COMMENTS
Hankel transform is A134751. Binomial transform of A105864. [From Paul Barry, Oct 07 2008]
FORMULA
Conjecture: (n+1)*a(n) +2*(1-4*n)*a(n-1) + 4*(4*n-5)*a(n-2) +4*(5-2*n)*a(n-3)=0. - R. J. Mathar, Nov 15 2011
G.f.: (1 - sqrt(1 - 4*x*(1 - x)/(1 - 2*x)))/(2*x). - G. C. Greubel, Jan 04 2017
G.f. A(x) satisfies: A(x) = 1 + x * (1/(1 - 2*x) + A(x)^2). - Ilya Gutkovskiy, Jun 30 2020
a(n) ~ 5^(1/4) * 2^(n-1) * phi^(2*n + 3/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 30 2020
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[1 - 4*t*(1 - t)/(1 - 2*t)])/(2*t), {t, 0, 50}], t] (* G. C. Greubel, Jan 04 2017 *)
PROG
(PARI) Vec((1 - sqrt(1 - 4*t*(1 - t)/(1 - 2*t)))/(2*t) + O(t^50)) \\ G. C. Greubel, Jan 04 2017
CROSSREFS
Sequence in context: A338184 A348351 A150134 * A154381 A150135 A150136
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 24 2001
STATUS
approved

  NODES
orte 1
see 2
Story 1