OFFSET
0,4
COMMENTS
Substituting x(1-x)/(1-2x) into x/(1-x^2) yields g.f. of sequence.
FORMULA
a(n) = 2a(n-1) + Sum{m<n-1}a(m) - F(n-3) where F(n) is the n-th Fibonacci number (A000045).
G.f.: x(1-x)(1-2x)/((1-x-x^2)(1-3x+x^2)).
a(n+1)=sum{k=0..floor(n/2), C(n,2k)*F(2k+1)}. [From Paul Barry, Oct 14 2009]
MATHEMATICA
CoefficientList[Series[x(1-x)(1-2x)/((1-x-x^2)(1-3x+x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Apr 23 2011 *)
PROG
(PARI) a(n)=(fibonacci(2*n-1)+fibonacci(n-2))/2
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Floor van Lamoen, Jan 21 2001
STATUS
approved