login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059935
Fourth step in Goodstein sequences, i.e., g(6) if g(2)=n: write g(5)=A059934(n) in hereditary representation base 5, bump to base 6, then subtract 1 to produce g(6).
16
1, 83, 775, 46655, 46657, 93395, 140743, 279935, 279937, 280019, 280711, 326591, 326593, 19916489515870532960258562190639398471599239042185934648024761145811
OFFSET
3,2
COMMENTS
2.659...*10^36305 = a(18) < a(19) < ... < a(31) = a(18) + 326594. - Pontus von Brömssen, Sep 20 2020
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 3..17
R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
Eric Weisstein's World of Mathematics, Goodstein Sequence
EXAMPLE
a(12) = 280019 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 1 = 1065, g(5) = 5^(5 + 1) + 2*5^2 + 2*5 = 15685 and g(6) = 6^(6 + 1) + 2*6^2 + 6 + 5 = 280019.
PROG
(Haskell) -- See Link
(Python)
from sympy.ntheory.factor_ import digits
def bump(n, b):
s=digits(n, b)[1:]
l=len(s)
return sum(s[i]*(b+1)**bump(l-i-1, b) for i in range(l) if s[i])
def A059935(n):
for i in range(2, 6):
n=bump(n, i)-1
return n # Pontus von Brömssen, Sep 20 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Feb 12 2001
STATUS
approved

  NODES
orte 1
see 2
Story 1