login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060055
Denominators of nonzero numbers appearing in the Euler-Maclaurin summation formula. (See A060054 for the definition of these numbers.)
6
2, 12, 720, 30240, 1209600, 47900160, 1307674368000, 74724249600, 10670622842880000, 5109094217170944000, 802857662698291200000, 14101100039391805440000, 1693824136731743669452800000
OFFSET
1,1
COMMENTS
Denominators of nonzero coefficients in the series expansion around zero of cot(x/2)/2, disregarding the first term. - Fredrik Johansson, Aug 20 2006
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 16 (3.6.28), p. 806 (23.1.30), p. 886 (25.4.7).
Zhanna Kuznetsova, and Francesco Toppan, Classification of minimal Z_2 X Z_2-graded Lie (super)algebras and some applications, arXiv:2103.04385 [math-ph], 2021.
MATHEMATICA
Join[{2}, f[n_]:=Denominator[-(-1)^n BernoulliB[2 n]/(2 n)!]; Table[f[n], {n, 30}]] (* Robert G. Wilson v, Sep 02 2004 *) (* adapted by Vincenzo Librandi, May 04 2017 *)
Join[{2}, Denominator[Table[SeriesCoefficient[x^2/(1 - E^x), {x, 0, n}], {n, 3, 25, 2}]]] (* Terry D. Grant, Jun 01 2017 *)
PROG
(Magma) [2] cat [Denominator(-(-1)^n*Bernoulli(2*n)/Factorial(2*n)): n in [1..15]]; // Vincenzo Librandi, Jun 04 2017
CROSSREFS
Numerators give A060054.
Sequence in context: A141770 A363098 A230265 * A363234 A061149 A191555
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Feb 16 2001
STATUS
approved

  NODES
orte 1
see 2
Story 1