login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060099
G.f.: 1/((1-x^2)^3*(1-x)^4).
8
1, 4, 13, 32, 71, 140, 259, 448, 742, 1176, 1806, 2688, 3906, 5544, 7722, 10560, 14223, 18876, 24739, 32032, 41041, 52052, 65429, 81536, 100828, 123760, 150892, 182784, 220116, 263568, 313956, 372096, 438957, 515508, 602889, 702240, 814891, 942172, 1085623
OFFSET
0,2
COMMENTS
Fourth column (m=3) of triangle A060098.
Partial sums of A038163.
Equals the tetrahedral numbers, [1, 4, 10, 20, ...] convolved with the aerated triangular numbers, [1, 0, 3, 0, 6, 0, 10, ...]. [Gary W. Adamson, Jun 11 2009]
REFERENCES
B. Broer, Hilbert series for modules of covariants, in Algebraic Groups and Their Generalizations..., Proc. Sympos. Pure Math., 56 (1994), Part I, 321-331. See p. 329.
LINKS
Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 20.
FORMULA
a(n) = Sum_{} A060098(n+3, 3).
G.f.: 1/((1-x)^7*(1+x)^3).
MATHEMATICA
a[n_]:=If[OddQ[n], ((1+n) (3+n) (5+n)^2 (7+n) (9+n))/5760, ((2+n) (4+n) (6+n) (8+n) (15+10 n+n^2))/5760]; Map[a, Range[0, 100]] (* Peter J. C. Moses, Mar 24 2013 *)
CoefficientList[Series[1/((1-x^2)^3*(1-x)^4), {x, 0, 100}], x] (* Peter J. C. Moses, Mar 24 2013 *)
LinearRecurrence[{4, -3, -8, 14, 0, -14, 8, 3, -4, 1}, {1, 4, 13, 32, 71, 140, 259, 448, 742, 1176}, 40] (* Harvey P. Dale, Apr 06 2018 *)
CROSSREFS
Cf. A001752 (for the similar series 1/((1-x)^4*(1-x^2))).
Cf. A028346 (for the similar series 1/((1-x)^4*(1-x^2)^2)).
Sequence in context: A037235 A363256 A051912 * A208638 A173277 A036420
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 06 2001
STATUS
approved

  NODES
orte 1
see 3
Story 1