login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062110
A(n,k) is the coefficient of x^k in (1-x)^n/(1-2*x)^n for n, k >= 0; Table A read by descending antidiagonals.
7
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 8, 12, 9, 4, 1, 0, 16, 28, 25, 14, 5, 1, 0, 32, 64, 66, 44, 20, 6, 1, 0, 64, 144, 168, 129, 70, 27, 7, 1, 0, 128, 320, 416, 360, 225, 104, 35, 8, 1, 0, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 0, 512, 1536, 2400, 2528, 1970
OFFSET
0,8
COMMENTS
The triangular version of this square array is defined by T(n,k) = A(k,n-k) for 0 <= k <= n. Conversely, A(n,k) = T(n+k,n) for n,k >= 0. We have [o.g.f of T](x,y) = [o.g.f. of A](x*y, x) and [o.g.f. of A](x,y) = [o.g.f. of T](y,x/y). - Petros Hadjicostas, Feb 11 2021
From Paul Barry, Nov 10 2008: (Start)
As number triangle, Riordan array (1, x(1-x)/(1-2x)). A062110*A007318 is A147703.
[0,1,1,0,0,0,....] DELTA [1,0,0,0,.....]. (Philippe Deléham's DELTA is defined in A084938.) (End)
Modulo 2, this triangle T becomes triangle A106344. - Philippe Deléham, Dec 18 2008
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzalez-Vega, J. Rafael Sendra, and Juana Sendra, Upper Hessenberg and Toeplitz Bohemians, arXiv:1907.10677 [cs.SC], 2019.
Milan Janjić, Words and Linear Recurrences, J. Int. Seq., 21 (2018), #18.1.4.
FORMULA
Formulas for the square array (A(n,k): n,k >= 0):
A(n, k) = A(n-1, k) + Sum_{0 <= j < k} A(n, j) for n >= 1 and k >= 0 with A(0, k) = 0^k for k >= 0.
G.f.: 1/(1-x*(1-y)/(1-2*y)) = Sum_{i, j >= 0} A(i, j) x^i*y^j.
From Petros Hadjicostas, Feb 15 2021: (Start)
A(n,k) = 2^(k-n)*n*hypergeom([1-n, k+1], [2], -1) for n >= 0 and k >= 1.
A(n,k) = 2*A(n,k-1) + A(n-1,k) - A(n-1,k-1) for n,k >= 1 with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1. (End)
Formulas for the triangle (T(n,k): 0 <= k <= n):
From Philippe Deléham, Aug 01 2006: (Start)
T(n,k) = A121462(n+1,k+1)*2^(n-2*k) for 0 <= k < n.
T(n,k) = 2^(n-2*k)*k*hypergeom([1-k, n-k+1], [2], -1) for 0 <= k < n. (End)
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Dec 09 2008
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 1 <= k <= n-1 with T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013
G.f.: Sum_{n.k>=0} T(n,k)*x^n*y^k = (1 - 2*x)/(x^2*y - x*y - 2*x + 1). - Petros Hadjicostas, Feb 15 2021
EXAMPLE
Table A(n,k) (with rows n >= 0 and columns k >= 0) begins:
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, ...
1, 2, 5, 12, 28, 64, 144, 320, 704, 1536, ...
1, 3, 9, 25, 66, 168, 416, 1008, 2400, 5632, ...
1, 4, 14, 44, 129, 360, 968, 2528, 6448, 16128, ...
1, 5, 20, 70, 225, 681, 1970, 5500, 14920, 39520, ...
1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, ...
... - Petros Hadjicostas, Feb 15 2021
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 4, 5, 3, 1;
0, 8, 12, 9, 4, 1;
0, 16, 28, 25, 14, 5, 1;
0, 32, 64, 66, 44, 20, 6, 1;
0, 64, 144, 168, 129, 70, 27, 7, 1;
0, 128, 320, 416, 360, 225, 104, 35, 8, 1;
... - Philippe Deléham, Nov 30 2008
MATHEMATICA
t[n_, n_] = 1; t[n_, k_] := 2^(n-2*k)*k*Hypergeometric2F1[1-k, n-k+1, 2, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 30 2013, after Philippe Deléham + symbolic sum *)
PROG
(PARI) a(i, j)=if(i<0 || j<0, 0, polcoeff(((1-x)/(1-2*x)+x*O(x^j))^i, j))
CROSSREFS
Columns of A include A000012, A001477, A000096, A000297.
Main diagonal of A is A002002.
Table A(n, k) is a multiple of 2^(k-n); dividing by this gives a table similar to A050143 except at the edges.
Essentially the same array as A105306, A160232.
Sequence in context: A216344 A332011 A229762 * A122896 A191348 A198792
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, May 30 2001
EXTENSIONS
Various sections edited by Petros Hadjicostas, Feb 15 2021
STATUS
approved

  NODES
COMMUNITY 1
INTERN 1