login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062707
Table by antidiagonals of n*k*(k+1)/2.
4
0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 0, 6, 6, 3, 0, 0, 10, 12, 9, 4, 0, 0, 15, 20, 18, 12, 5, 0, 0, 21, 30, 30, 24, 15, 6, 0, 0, 28, 42, 45, 40, 30, 18, 7, 0, 0, 36, 56, 63, 60, 50, 36, 21, 8, 0, 0, 45, 72, 84, 84, 75, 60, 42, 24, 9, 0, 0, 55, 90, 108, 112, 105, 90, 70, 48, 27, 10, 0
OFFSET
0,8
FORMULA
T(n, k) = T(n, 1)*T(1, k) = A001477(n)*A000217(k).
T(n, k) = A057145(n+2, k+1)-(k+1).
EXAMPLE
0 0 0 0 0 0 0 0 0
0 1 3 6 10 15 21 28 36
0 2 6 12 20 30 42 56 72
0 3 9 18 30 45 63 84 108
0 4 12 24 40 60 84 112 144
0 5 15 30 50 75 105 140 180
0 6 18 36 60 90 126 168 216
0 7 21 42 70 105 147 196 252
0 8 24 48 80 120 168 224 288
MAPLE
seq(seq(k*binomial(n-k+1, 2), k=0..n), n=0..12); # G. C. Greubel, Sep 02 2019
MATHEMATICA
Table[k*Binomial[n-k+1, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 02 2019 *)
PROG
(PARI) T(n, k) = k*binomial(n-k+1, 2);
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Sep 02 2019
(Magma) [k*Binomial(n-k+1, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2019
(Sage) [[k*binomial(n-k+1, 2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 02 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> k*Binomial(n-k+1, 2)))); # G. C. Greubel, Sep 02 2019
CROSSREFS
Main diagonal is A002411. Sum of antidiagonals is A000332.
Sequence in context: A062787 A131370 A261180 * A160230 A373418 A293500
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jul 11 2001
STATUS
approved

  NODES
orte 1
see 1
Story 1