login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that usigma(k) = phi(k)*omega(k), where omega(k) is the number of distinct prime divisors of k.
1

%I #13 Jun 25 2018 03:22:29

%S 35,99,357,495,1672,2108,3135,3465,3692,5152,11704,14756,15800,18375,

%T 20026,23374,23560,25714,25844,33915,35074,39585,49196,55154,56134,

%U 66040,86900,99484,104140,105105,110600,116116,124558,141340,157586

%N Numbers k such that usigma(k) = phi(k)*omega(k), where omega(k) is the number of distinct prime divisors of k.

%H Harry J. Smith, <a href="/A063795/b063795.txt">Table of n, a(n) for n = 1..200</a>

%o (PARI) us(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d));

%o for(n=1,10^7, if(us(n)==eulerphi(n)*omega(n),print(n)))

%o (PARI) us(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))

%o { n=0; for (m=1, 10^9, if(us(m)==eulerphi(m)*omega(m), write("b063795.txt", n++, " ", m); if (n==200, break)) ) } \\ _Harry J. Smith_, Aug 31 2009

%Y Cf. A034448.

%K nonn

%O 1,1

%A _Jason Earls_, Aug 18 2001

  NODES
COMMUNITY 1